
Tracing paragraphs

Udo Wermuth

Abstract

The program TEX provides more than a dozen con-
trol words for diagnostic and debugging purposes.
Some of them are used often, others handle special
tasks and are less frequently applied. In the latter
case falls the parameter \tracingparagraphs that
seems to be a hidden gem. This article explains what
the parameter triggers if set and how an author can
use the trace data to check and improve his text.

1 Introduction

The TEX software, described in TEX : The Program

[8], implements several control sequences to show
information about its work. The commands and pa-
rameters form a set of powerful tools to help diag-
nose errors. TEX itself contains nine primitive in-
teger parameters for tracing ([6, p. 273]) and four
primitive show commands ([6, p. 279]). The plain

format defines additional macros ([6, p. 364]).

The tracing parameters might be classified into
different groups: Some look at the settings of the
installation, like \tracingstats, others are used
mainly for developers, like \tracingmacros, and
some (or all) can be used to get a better understand-
ing how TEX operates. For example, the parame-
ter \tracingparagraphs gives detailed insights into
the inner workings of TEX’s line-breaking algorithm.

Four tracing parameters are optional, i.e., their
value might be ignored by a working TEX program
([6, p. 303]) without violating one of the conditions
which allow a program to carry the name TEX, called
the TRIP test [7]. For example, TEX’s two control se-
quences \tracingstats and \tracingparagraphs

are this kind of parameter. They were deemed op-
tional as the code to implement them slows down
the program even when they are not in use, i.e.,
set to their default value 0. That might have been
annoying in the early days of TEX, but today with
faster machines the effect is small and so most imple-
mentations of TEX provide them. Speed is only one
aspect as some parameters trigger a huge amount
of output to be written in the log file of the run.
The setting \tracingstats=1 adds only eight lines
to the log file, but setting \tracingparagraphs=1

increases the size of the log file significantly as every
paragraph in the scope of this parameter is copied at
least once into the log file, accompanied by several
lines of trace data.

358 TUGboat, Volume 37 (2016), No. 3

I don’t remember how long I played with the pa-
rameter \tracingparagraphs when I learned TEX.
After I gained some experience with TEX I probably
read only pages 98–99 of The TEXbook [6], a cou-
ple of double dangerous-bend paragraphs, and did
not see how to benefit from the output in my work.
(Somehow I missed the hint of a real world appli-
cation on page 317 of [6].) Other tracing parame-
ters, for example, \tracingmacros, became an im-
portant tool to diagnose problems. Years later I read
the protocol of a Q&A session with Donald E. Knuth
([12] or [13], Ch. 32) and I realized that the parame-
ter \tracingparagraphs is a powerful tool too.

Section 2 gives a high-level overview of TEX’s
line-breaking algorithm and its parameters and in
section 3 the format of the trace data for this al-
gorithm is explained. Section 4 gives examples how
I make use of the trace and section 5 shows some
aspects of \looseness that makes it difficult to ex-
tract precisely from the trace data the range of lines
in which a paragraph can be typeset without violat-
ing the current parameter settings.

All the figures except Figs. 8, 9, 10, and 12 rep-
resent data from a previous run of this article; all
examples are typeset and traced by TEX during the
last compilation.

2 TEX’s line-breaking algorithm

This is not the place to present the details of TEX’s
sophisticated line-breaking algorithm but as the pa-
rameter \tracingparagraphs creates a trace of this
algorithm, an overview will be given.

The procedure tries to break the text into lines
of a given length. This length is usually \hsize

but also \leftskip, \rightskip, \hangindent, or
\parshapemust be considered. Each line gets a bad-
ness value which is calculated as a function of the
change of the available white space, i.e., the glue,
which is necessary to place the content of the line
into the given length. A finite badness is an integer
between 0 and 9999, larger values are considered to
be infinite and are not distinguished anymore ([6],
p. 97). The badness is approximately min(100 ×

r3, 10000) if the ratio of used to available amount
of change is called r.

Based on the badness each line is assigned a
fitness class. A line is called

C0. very loose if the badness value is 100 or more
and the glue has to stretch;

C1. loose if the badness value is between 13 and 99
and the glue has to stretch;

C2. decent if the badness value is between 0 and 12;

Udo Wermuth

C3. tight if the badness value is 13 or more and the
glue has to shrink.

A line break can occur only at certain points;
there are five possibilities ([6], p. 96). A line can be
broken at

B1. glue, i.e., at white space, if a non-discardable
item (not glue, kern, penalty or a math switch)
appears before the glue;

B2. a kern, if it is followed by glue;
B3. math-off, i.e., at the end of a formula, if it is

followed by glue;
B4. a penalty which is either entered directly into

the text as an indication how desirable a break
at this point is or inserted by TEX automati-
cally, for example, in a formula;

B5. a discretionary break when TEX splits a word
either at an explicit or an inserted implicit hy-
phen.

Note that TEX controls white space in math mode;
in this mode B1 and B2 are not used.

Certain line breaks get a penalty based on the
following parameters, listed here with their default
values which the plain TEX format sets:

P1. \exhyphenpenalty (default 50) which is used
if a break occurs after an explicit hyphen, i.e.,
a hyphen that is present in the input;

P2. \hyphenpenalty (default 50) which is applied
at an automatically inserted hyphen;

P3. \binoppenalty (default 700) which is applied
if a formula is broken after a binary operation;

P4. \relpenalty (default 300) which is applied if a
formula is broken after a relation symbol.

And there is a special penalty called \linepenalty

(default 10) that is applied to every line.
Finally, each line gets a value called demerits by

which TEX rates the constructed lines and sets the
breakpoints ([6], pp. 97–98). TEX’s goal is to select
those line breaks that minimize the sum of the line
demerits. (TEX’s decision can be changed via the
integer parameter \looseness ([6], p. 103) to select
a set of line breaks that might result in a different
number of lines for the paragraph.) Demerits com-
bine two aspects: d = d1 + d2. The first summand
d1 is based on badness and penalty. The formula
by which TEX calculates the demerits d1 follows. It
shows the special role that the \linepenalty, let’s
call it l, plays. If b stands for the badness of a line
and p for the penalty assigned to the break then

d1 = (l + b)2 +

{

sign(p) p2, −10000 < p < 10000
0, p ≤ −10000.

No line break occurs if p ≥ 10000, and p ≤ −10000
represents a forced break.

TUGboat, Volume 37 (2016), No. 3 359

The second aspect d2 is the sum of fixed values:

D1. \adjdemerits (default 10000) is added either
to the second line if adjacent lines fall in one of
the fitness class pairs (very loose, decent), (very
loose, tight), or (loose, tight) or if the first line
is very loose.

D2. \doublehyphendemerits (default 10000); it is
added to the second line if two consecutive lines
end with a discretionary break.

D3. \finalhyphendemerits (default 5000) which is
added to the last line if the second-last line ends
with a discretionary break.

Now all but one ingredient of the algorithm has
been described. The last item is a limit for the bad-
ness which the algorithm uses to decide if a line is
acceptable. TEX knows two limits ([6], p. 96):

T1. \pretolerance (default 100) which is used as
the limit in TEX’s attempt to break the para-
graph without hyphenation of words (breaks are
still allowed at explicit hyphens, i.e., a ‘-’ or
a ‘\-’);

T2. \tolerance (default 200) which is used as the
limit when hyphenation of words is allowed.

The line-breaking algorithm tries in up to three
passes to cut the paragraph into lines whose badness
values are less than the current limit. In the first pass
the limit T1 counts and no words are given to TEX’s
hyphenation algorithm. If this pass fails then a sec-
ond pass with the limit T2 and word hyphenation
is made. This pass outputs the paragraph even if it
fails, except if the dimen \emergencystretch has a
positive value. In the first case an overfull line with
infinite badness is constructed. In the second case
the failed second pass is followed by a third pass
with word hyphenation, badness limit T2, and ad-
ditional stretchability per line given by the value of
the dimen \emergencystretch. This pass may fail
too but then either the value of the dimen must be
increased or “the line-breaking task is truly impos-
sible” ([6], p. 107).

3 Format of \tracingparagraphs’s output

The TEXbook [6] explains on pages 98–99 the main
aspects of the trace data. The full details are con-
tained in Computers & Typesetting, Volume B [8] in
§§ 813–890 together with the code for general print-
ing routines like §§ 174–175, and 245.

The single assignment \tracingparagraphs=1
triggers if trace data is written in the log file. Here is
an overview of the kind of data that is output:
• optional header which identifies for which pass

of the line-breaking algorithm the output is written.

Tracing paragraphs

It is one of the words @firstpass, @secondpass,
or @emergencypass. The headers of the first and
second pass are not output if the limit of T1 in sec-
tion 2, the parameter \pretolerance, prevents the
first pass, i.e., if it is negative (see § 863). It would be
nice to add a hook to the log file in this situation,
let’s say @hyphenationpass to signal in a unique
way the start of the trace data. But such a change
violates the TRIP test [7] although it changes only
the log file.

• break candidates which are considered by the
algorithm as there is a valid way to break the line at
this point using a previously found feasible break-
point. The output has the form “@<w> via @@<m>

b=<x> p=<y> d=<z>” (§ 856) where the placeholders
<x>, <y>, and <z> are the values of the badness of
the line, the penalty for the break (see P1–P4) if
applicable, and the demerits of the line, whose cal-
culation uses the \linepenalty and adds the values
of D1–D3 if the conditions are met. The @@<m> doc-
uments the feasible breakpoint, after which the cur-
rent line starts (the value 0 stands for the start of
the paragraph). The first parameter <w> indicates
the kind of break: It is empty if the break occurs
at glue between words; otherwise it is (see B2–B5)
\kern, \math, \penalty, \discretionary, or, at
the end of the paragraph, \par. When the badness
values <x> are calculated for an emergency pass, the
values represent the data that the line-breaking al-
gorithm uses to get the demerits, i.e, one of TEX’s
input values for its rating function. The “real” val-
ues for the badness as “seen in the output” depend
heavily on the used stretchability given by the di-
men \emergencystretch, but these values are not
shown in the trace data. See below for an example.

Principally, three types must be distinguished:

◦ inter-word breaks that are line breaks between
words or symbols, i.e., the cases B1–B4.

◦ discretionary breaks (case B5) indicated by the
word \discretionary for <w>, which signals
that the line break occurs within a word. Then
pre-break and post-break information must be
considered to construct the contents of the line.

◦ end-of-par breaks indicated by \par. This shows
that the line break algorithm was able to pro-
cess the whole paragraph. TEX rates the end of
a paragraph as a forced break and assigns there-
fore a penalty of −10000, which does not add to
the demerits (see the formula for the calculation
of demerits in section 2).

Note it is possible to have several break can-
didates at the end of a line for different feasible
breakpoints.

360 TUGboat, Volume 37 (2016), No. 3

• feasible breakpoint which gives the best way to
break the paragraph up to this point using the cur-
rent settings of the line-breaking algorithm for one of
the break candidates that appear above this feasible
breakpoint. The output in the log file is the string
“@@<n>: line <a>.<c> t=<d> -> @@<m>” (§ 846)
where <n> is the new sequence number of the cur-
rent feasible breakpoint, and <m> states the number
of the feasible breakpoint which the new breakpoint
needs as the previous line break. The content data
between these two breakpoints is then line number
<a>. It belongs to the fitness class (range is 0–3
(§ 817); name is given in C), and ends with a
hyphen if <c> is ‘-’. The value <d> states the total
demerits of the whole paragraph up to this line, i.e.,
it is the sum of the <z> values of the break candi-
dates for the set of lines ending with this feasible
breakpoint.

Note it is not yet determined if this feasible
breakpoint will be used to construct the paragraph.
The best end-of-par break names the previous feasi-
ble breakpoint for the last feasible breakpoint.

The final feasible breakpoints are treated as
having a hyphen as the value of <c> (§ 829).
• content data which is the text seen by the algo-

rithm (§ 857). It is split in small parts as the break-
points are listed in the output too. In passes that
try to hyphenate the words all hyphenation points
of TEX’s hyphenation algorithm are inserted.

The trace data ends with an empty line (§ 245).
Note: Except for the content data all trace lines start
with the symbol @.

Final remark: Values for the badness are some-
times stated as * which means that it is infinite ac-
cording to TEX’s rules. For demerits such an aster-
isk means that the calculation was not performed
because of certain forced conditions (§ 856).

The format of the trace lines is rather terse and
a lot of trace lines are written even if they do not
contribute to the final line breaks. An example will
help to understand the above stated description of
the data.

Example 1: TEX input

\tracingparagraphs=1

\noindent
Note: {\sl pretolerance\/} is \the\pretolerance\
and {\sl tolerance\/} is \the\tolerance, the
{\it hsize\/} is~\the\hsize.

This is a nonsense text to serve as a
constructed example that shows all kind of trace
lines. It contains~inline mathematics and text in
columns. The formula $2\times 2^2 = 8$ is simple
mathematics as well as formula $\root3 \of 8 = 2$
or what do you think? Now a declaration or

Udo Wermuth

definition for a three columns tabbing
environment is made.
\settabs 3 \columns \+&&End of example:\cr

TEX output

Note: pretolerance is 100 and tolerance is 200, the hsize

is 225.0pt.

This is a nonsense text to serve as a constructed
example that shows all kind of trace lines. It contains in-
line mathematics and text in columns. The formula
2 × 22 = 8 is simple mathematics as well as formula
3
√
8 = 2 or what do you think? Now a declaration or

definition for a three columns tabbing environment is
made.

End of example:

Note: The small rectangle at the end of the previous
line indicates the end of an example.

The trace data was written in the log file; here
are all trace lines with numbers for identification.

Example 1 continued: Log file contents

1. @firstpass
2. \ninerm Note: \ninesl pretolerance \ninerm

is 100 and \ninesl tolerance \ninerm is
200, the \nineit hsize

3. @\kern via @@0 b=2 p=0 d=144
4. @@1: line 1.2 t=144 -> @@0
5. \ninerm is 225.0pt.
6. @\par via @@1 b=0 p=-10000 d=100
7. @@2: line 2.2- t=244 -> @@1
8.

9. @firstpass
10. []\ninerm This is a nonsense text to serve

as a constructed
11. @ via @@0 b=23 p=0 d=1089
12. @@1: line 1.1 t=1089 -> @@0
13. @secondpass
14. []\ninerm This is a non-sense text to serve

as a con-structed
15. @ via @@0 b=23 p=0 d=1089
16. @@1: line 1.1 t=1089 -> @@0
17. ex-
18. @\discretionary via @@0 b=27 p=50 d=3869
19. @@2: line 1.3- t=3869 -> @@0
20. am-ple that shows all kind of trace lines.

It con-tains in-
21. @\discretionary via @@1 b=38 p=50 d=14804
22. @\discretionary via @@2 b=0 p=50 d=12600
23. @@3: line 2.2- t=16469 -> @@2
24. @@4: line 2.3- t=15893 -> @@1
25. line
26. @ via @@2 b=91 p=0 d=10201
27. @@5: line 2.3 t=14070 -> @@2
28. math-e-mat-ics and text in col-umns. The

for-mula
29. @ via @@3 b=137 p=0 d=31609
30. @ via @@4 b=137 p=0 d=31609
31. @@6: line 3.0 t=47502 -> @@4
32. $2 \ninesy ^^B
33. @\penalty via @@3 b=0 p=700 d=490100
34. @\penalty via @@4 b=0 p=700 d=490100
35. @\penalty via @@5 b=123 p=700 d=517689
36. @@7: line 3.2 t=505993 -> @@4

TUGboat, Volume 37 (2016), No. 3 361

37. \ninerm 2[] =
38. @\penalty via @@5 b=10 p=500 d=250400
39. @@8: line 3.2 t=264470 -> @@5
40. 8$ is sim-ple math-e-mat-ics as well as

for-mula
41. @ via @@6 b=57 p=0 d=4489
42. @@9: line 4.1 t=51991 -> @@6
43. $[][] =
44. @\penalty via @@6 b=72 p=500 d=266724
45. @\penalty via @@7 b=1 p=500 d=250121
46. @@10: line 4.3 t=314226 -> @@6
47. 2$
48. @\math via @@7 b=2 p=0 d=144
49. @\math via @@8 b=130 p=0 d=29600
50. @@11: line 4.0 t=294070 -> @@8
51. or
52. @ via @@8 b=7 p=0 d=289
53. @@12: line 4.2 t=264759 -> @@8
54. what do you think? Now a dec-la-ra-tion or
55. @ via @@9 b=31 p=0 d=1681
56. @@13: line 5.1 t=53672 -> @@9
57. def-i
58. @\discretionary via @@9 b=4 p=50 d=2696
59. @\discretionary via @@10 b=119 p=50 d=29141
60. @@14: line 5.2- t=54687 -> @@9
61. -
62. @\discretionary via @@9 b=20 p=50 d=13400
63. @\discretionary via @@10 b=82 p=50 d=20964
64. @@15: line 5.3- t=65391 -> @@9
65. ni-
66. @\discretionary via @@10 b=14 p=50 d=13076
67. @\discretionary via @@11 b=106 p=50 d=15956
68. @@16: line 5.0- t=310026 -> @@11
69. tion
70. @ via @@10 b=4 p=0 d=196
71. @ via @@11 b=2 p=0 d=10144
72. @ via @@12 b=107 p=0 d=23689
73. @@17: line 5.0 t=288448 -> @@12
74. for
75. @ via @@12 b=0 p=0 d=100
76. @@18: line 5.2 t=264859 -> @@12
77. a
78. @ via @@12 b=25 p=0 d=1225
79. @@19: line 5.3 t=265984 -> @@12
80. three col-umns tab-bing en-vi-ron-ment is
81. @ via @@13 b=57 p=0 d=4489
82. @@20: line 6.1 t=58161 -> @@13
83. made.
84. @\par via @@14 b=48 p=-10000 d=8364
85. @\par via @@15 b=10 p=-10000 d=5400
86. @\par via @@16 b=0 p=-10000 d=15100
87. @\par via @@17 b=0 p=-10000 d=10100
88. @\par via @@18 b=0 p=-10000 d=100
89. @\par via @@19 b=0 p=-10000 d=100
90. @\par via @@20 b=0 p=-10000 d=100
91. @@21: line 7.2- t=58261 -> @@20
92. @@22: line 6.3- t=63051 -> @@14
93.

As expected, the trace starts with @firstpass

for the first paragraph. Line 2 is the content data
preceded by a \ninerm, which was added by TEX’s
routines (§ 174); it was not part of the input. As
you see all font switching commands are spelled out

Tracing paragraphs

explicitly with the control sequence that TEX asso-
ciates with the requested font. Line 3 outputs the
first break candidate; it is a break at the italic cor-
rection and so <w> is \kern. The badness is 2, i.e.,
the line is decent, penalty is 0 and therefore the de-
merits are (10 + 2)2 = 144. That the line is decent
can been seen in line 4 of the listing as a “.2” appears
after the line number (see C2). Line 6 documents an
end-of-par break, so the first pass was successful.
As explained above the <c> is ‘-’ merely because of
the end of the paragraph; it does not indicate that
the final line ends with an hyphen. The penalty is
−10000 to mark a forced break; this value is ignored
as stated in the formula for the calculation of demer-
its and therefore the demerits of the second line are
(10 + 0)2 = 100. The total demerits are the sum of
the line demerits: 144 + 100 = 244 (see line 7).

The data of the second paragraph is much more
interesting. Again the header line of the first pass is
printed (line 9), but only one feasible breakpoint
is found and output. This means TEX’s algorithm
was unable to find a second break candidate, so it
stops this pass, and starts the second pass, which
outputs its header line (line 13). Note however, that
the content data in line 10 has in front of the font in-
formation, which is inserted as described above, the
construction []. This stands for output that TEX
cannot show; in this case it is the white space cre-
ated by the indentation. This is the normal behavior
for all non-printable items (see § 175). In the sec-
ond pass hyphenation is tried so TEX shows all hy-
phenation points in the words by inserting hyphens.
Compare line 14 with line 10: TEX has placed hy-
phens in the words “nonsense” and “constructed”.
The breakpoint in the lines 17–19 is a discretionary
break. In line 18 the penalty is 50, the value of
\hyphenpenalty. In line 19 the 1.3- states that it
is a tight line ending in an hyphen.

Let’s look at some interesting points without
going through all the details of the trace.

◦ Lines 21 and 22 show that more than one break
candidate can occur but they must use different
feasible breakpoints after the “via”.

◦ In lines 33–35 and in lines 38 & 44–45 penalty
breaks are shown in math mode. In the first
set the break occurs after a binary operation
and the \binoppenalty is applied. The break
in the second set is made after a relation and
the \relpenalty is used.

◦ An example for a line break after a math-off is
given in lines 47–50.

◦ Lines 57ff. show a discretionary break in the
word “definition” which contains the ligature
“fi”. An implicit discretionary break is used for

362 TUGboat, Volume 37 (2016), No. 3

the ligature with the pre-break text “f-”, the
post-break text “i” and the no-break text “fi”.
Both pre-break and post-break text are stated
in the content data of line 57. After feasible
breakpoint 14 just a hyphen is added to the
line.

◦ The end-of-line break candidates in the lines
84–90 signal the successful completion of the
second pass. Lines 88–90 seem to be equivalent
judged by the data in the lines, but the path
via feasible breakpoint 20 has the lowest total
demerits and therefore it is stated in the feasible
breakpoint @@21.

◦ Feasible breakpoint @@22 gives an alternative
path via feasible breakpoint @@14. Its total de-
merits are higher than for feasible breakpoint
@@21 therefore it is not used by TEX. But the
number of lines is lower and so it would be a
valid path if the author states \looseness=-1
(see example 2 below).

◦ The trace ends with an empty line. It is shown
here but the other examples will omit it.

The paragraph is now built from bottom to top:
The last line is between @@20 and @@21, its content
is “made” (see line 83). The second last line starts at
@@13 with the concatenation of the content in lines
57, 61, 65, 69, 74, 77, and 80. The third last line
begins at @@9, the next at @@6, then at @@4, the sec-
ond line of the paragraphs starts at @@1 and the first
at the beginning of the paragraph, of course. Their
content is built from the lines carrying the content
data between the mentioned feasible breakpoints.

So the feasible breakpoints @@2, @@3, @@5, @@7,
@@8, @@10 to @@12, and @@15 to @@19 are never used
in the line breaks of the paragraph chosen by TEX
(@@14 and @@22 are used if only six lines are built).

The text entered in the tabbing environment is
not repeated in the trace as the line-breaking algo-
rithm is not called and so no trace lines are output.

4 Applications

The description in the previous section makes clear
that the task of decoding the tracing information by
hand is difficult, or at least time consuming. More-
over, the trace data must be enhanced as example 1
has shown: There are two ways to break the para-
graph and the selection involves the knowledge of
the current setting of \looseness. So its value has
to be put in the log file too. The value is reset to 0
after each paragraph; TEX uses the value that it has
at the end of the paragraph ([6, p. 349]). The follow-
ing code writes the parameter to the log file; here it
is applied to the second paragraph of example 1.

Udo Wermuth

Example 2: TEX input

\let\orglooseness=\looseness
\def\writelooseness{% output looseness to log

\immediate\wlog{@ looseness \the\orglooseness}}
\def\setlooseness{% enhanced version of looseness

\afterassignment\writelooseness\orglooseness}
\let\looseness=\setlooseness

\tracingparagraphs=1 \looseness=-1
This is a nonsense text to serve as a . . .

TEX output

This is a nonsense text to serve as a constructed
example that shows all kind of trace lines. It contains in-
line mathematics and text in columns. The formula
2 × 22 = 8 is simple mathematics as well as formula
3
√
8 = 2 or what do you think? Now a declaration or def-

inition for a three columns tabbing environment is made.

The first line of the excerpt from the log file
shows the output of the macros; note that the line
might not appear directly in front of the start of the
data but it is always first. The trace data is nearly
identical to the data shown for example 1. All trace
lines are present but their sequence is changed and
at the end one more feasible breakpoint is added
for a six-line paragraph; in this case the ligature in
“definition” is resolved and the break is after the ‘f’.

Example 2 continued: Log file contents

1. @ looseness -1
2. @firstpass
3. []\ninerm This is a nonsense text to serve

as a constructed
4. @ via @@0 b=23 p=0 d=1089
5. @@1: line 1.1 t=1089 -> @@0
6. @secondpass

. . .

76. made.
77. @\par via @@19 b=0 p=-10000 d=100
78. @\par via @@18 b=0 p=-10000 d=100
79. @\par via @@17 b=0 p=-10000 d=10100
80. @\par via @@16 b=0 p=-10000 d=15100
81. @\par via @@15 b=10 p=-10000 d=5400
82. @\par via @@14 b=48 p=-10000 d=8364
83. @@21: line 6.2- t=70791 -> @@15
84. @@22: line 6.3- t=63051 -> @@14
85. @\par via @@20 b=0 p=-10000 d=100
86. @@23: line 7.2- t=58261 -> @@20

The integer parameter looseness influences the
line-breaking algorithm and makes it select para-
graph lines that are not the optimum. Most often
this price is worth being paid to improve the page
breaking. It would be useful to inform an author
about the possibilities to shorten or to lengthen a
paragraph. Section 5 discusses this topic in more
detail.

In the following I do not discuss lines with over-
full boxes, etc. These are reported by TEX during
the run. My recommendation is that an author re-
act to these messages. Moreover, only the multiline

TUGboat, Volume 37 (2016), No. 3 363

paragraphs are handled in the figures. This article
contains many single-line paragraphs through the
verbatim listings but they are not discussed. The
following tasks are addressed:

1. Find hyphenated words.
2. Find the longest sequence of hyphenated lines.
3. Find paragraphs that contain visually incom-

patible lines.
4. Find sequences of lines starting or ending with

the same word.
5. Use statistics to learn about the overall appear-

ance of the text.
6. Perform actions to eliminate detected problems.

List of hyphenated words. In a Q&A session
Donald E. Knuth was asked why TEX does not pro-
vide a way to generate a list of hyphenated words
of a text. He answered that a little filter program
can do the work if all relevant tracing is switched on
([12], p. 365 or [13], pp. 620–621).

There are several ways to get the hyphenated
words, for example, one could set \hbadness=-1 and
check the output for lines ending in a hyphen. See
for example, exercise 28 of [11]. (Note: Such lines
often start with the words “loose” and “tight” but
that does not refer to C1 and C3, resp. See [6],
p. 302.) A problem might be that the part of a word
at the beginning in the last line is not output. An-
other approach is to filter the output of dvitype

[10]. I decided to use the trace data of the com-
mand \tracingparagraphs. Of course, that meant
writing the “little filter program” for efficient extrac-
tion of data. Such a program reads the trace data,
chooses the right final feasible breakpoint, goes back
through the chain of feasible breakpoints looking at
the content data and saves all hyphenated words.
The script might output a list like the one in Fig. 1.

It is much easier to check such a file for bad hy-
phenation than to go through the DVI output and
check every end of line. Changes to this list be-
tween runs can be analyzed by a diff command. And
more is possible: As TEX hyphenates all the words
in certain passes they can be collected in a list, sup-
plied with corrected hyphenation points if necessary,
and saved in a database. With time this database

A ‘=’ marks the hyphenation point.

1: con=trol
2: pa=ram-e-ters
3: di-ag=nose

. . .

160: Stan=ford
161: Pro=gram

Figure 1: List of hyphenated words

Tracing paragraphs

Show line-break statistics based on the log file of a TeX run.

texput.log analyzed on 05/11/16, 14:48:16

Hsize: 225.0pt; Parindent: 20.0pt; Parfillskip: 168.75pt plus 13.49945pt minus 168.75pt

Parameter settings for line breaking:

Pretolerance: 100; Tolerance: 200; Emergencystretch: 0.0pt
Linepenalty: 10; Exhyphenpenalty: 49; Hyphenpenalty: 50
Binoppenalty: 700; Relpenalty: 500
Adjdemerits: 10000; Doublehyphendemerits: 10000; Finalhyphendemerits: 5000

Single-line paragraphs : 570
vloose loose decent tight

Line categories: 0 0 563 7

Multiline Paragraphs : 201
with total lines : 1155
and lines pro par between : 2 and 25
with demerits between : -156 and 545991

Demerits in range >1,000,000 200,000 50,000 20,000 10,000 5,000 0
Positive values: 0 2 17 46 25 26 84
Negative values: 0 0 0 0 0 0 1

Figure 2: General information about this article

represents an author’s active vocabulary and the
list of all hyphenated words can be checked against
the database to find wrong hyphenation points that
can be given as exceptions using the control word
\hyphenation. And new entries enlarge the data-
base (for this article by 56 words). The list can
also be generated by \pretolerance=-1 (no first
pass), set \emergencystretch=\hsize (allow awful
lines), apply \looseness=1000 to every paragraph,
and run dvitype [10] to find all hyphenated words.

A wrong hyphen in a word must be corrected, of
course. Either declare the word at the beginning of
the document as a hyphenation exception, or add \-

to the word at the right place, or put a short word
into an \hbox to avoid the hyphen. The last two
methods are useful if the word occurs only a few
times in the text. For this text three hyphenation
exceptions are specified: Eng-lish, stretch-abil-
ity and Mas-sa-chu-setts.

Note: In order to distinguish between explicit,
i.e., author entered, and implicit, i.e., TEX inserted,
hyphens I subtract 1 from \exhyphenpenalty if it
equals \hyphenpenalty (see Fig. 2). This changes
the calculations of TEX during the tracing compared

13% lines with implicit hyphen : 161
0% lines with explicit hyphen : 2

with longest sequence : 3
and hyphenated final lines : 22

Figure 3: Global statistics about hyphenated lines

364 TUGboat, Volume 37 (2016), No. 3

to the normal run, but the impact is usually small,
at most 99 demerits for a break at an explicit hyphen
with the defaults of plain TEX.

Martin Budaj wrote a script in Perl [1] that
finds the hyphenated words in the trace data and
outputs a list similar to Fig. 1. A LuaTEX solution
is described in [4]. Its author, Patrick Gundlach, de-
veloped also the package [3] for LuaLATEX to show all
hyphenation points using tiny vertical marks inside
the text similar to the triangles in Fig. 1 of [5].

Counting consecutive hyphenated lines. As all
the lines are checked for discretionary breakpoints,
overall statistics can be collected to give information
on the longest sequence of consecutive lines that are
hyphenated. For example, the report for an early
draft of this article showed that the longest sequence
of hyphenated lines was 5, which is too long accord-
ing to [2], 3.11: When four or more lines end with

a hyphen or the same word, word spacing should

be adjusted to prevent such “stacks.” The current
count for this article is shown in Fig. 3.

The length of the longest sequence of hyphen-
ated lines is valuable and easily output by the script.
The author decides if this length is acceptable or not.
How can the hyphen stack be reduced? An author
has several possibilities:

A0. change the words of the paragraph;
A1. increase the penalties and demerits that have

to do with hyphenation for this paragraph;

Udo Wermuth

A2. lower the \tolerance and use a positive value
for \emergencystretch in this paragraph;

A3. try to make the paragraph a line longer (or
shorter) using \looseness (maybe supported
by a positive value of \emergencystretch);

A4. improve the chance of the first pass by increas-
ing \pretolerance for this paragraph;

A5. put the third or fourth hyphenated word in an
hbox if it is a short word.

Action A0 is always an option and it is guar-
anteed to be successful; the other actions might fail.
Actions A1, A2, and A4 should not be made for the
whole text; apply the parameter setting only to the
“bad” paragraph; see below.

Relationships between lines. Instead of count-
ing and printing numbers of lines of a certain type
the relationships between lines can be documented.
As an example I use the data of the fitness classes
C0–C3.

4% very loose lines : 53
21% loose lines : 243
62% decent lines : 713
13% tight lines : 146

Figure 4: Distribution of fitness classes

Figure 4 reports on the distribution of the lines
into the four classes. The distribution shows that
less than two-thirds of all lines in multiline para-
graphs are decent. Michael F. Plass and Donald E.
Knuth gave in [5] some results for the second vol-
ume of The Art of Computer Programming, a book
with 702 pages, 5526 paragraphs, and 21057 lines. (I
refer to this article through the reprint in [13].) The
article was published in 1981 one year before TEX82
was released and the algorithm was changed a little
bit for TEX82, see [8, § 813]. But the algorithm is
close enough that the data can serve as an exam-
ple. In [13], p. 125, Fig. 19, Donald E. Knuth shows
the distribution of lines into the fitness classes. A
rough measurement of this data together with the
definitions on page 112 of [13] gives the distribution
(2, 14, 79, 5)% for (very loose, loose, decent, tight).
So the data for the present article is worse. On the
other hand the book has an hsize of 468 pt compared
to the 225 pt of this column; the line-breaking job is
easier for the book.

The numbers for transitions from one class to
another provides additional insights (see Fig. 5). It
gives the volume of visually incompatible lines. Only
a few lines are incompatible, about 2.9%. In sum-
mary the data looks acceptable to me. Only a few
jumps from very loose or loose to tight occur. The
majority of transitions is listed on the “diagonal”,

TUGboat, Volume 37 (2016), No. 3 365

From / To: vloose loose decent tight
vmode 1 2 169 29
vloose 18 11 12 3
loose 15 57 109 15
decent 16 157 339 75
tight 3 16 84 24

Figure 5: Transitions between fitness classes

so lines of the same class follow most often. One in-
tentionally bad paragraph is the second paragraph
in the introduction. There, lines 3 and 4 are very
loose, lines 5 and 7 are tight, and line 6 is loose.

To improve a paragraph with excessive transi-
tions between visually incompatible lines the above-
mentioned action A2 seems to be the best choice.
Usually it reduces the number of very loose lines if
the parameters are chosen carefully; see below.

Distribution of demerits. When the topic “dis-
tribution” is considered, the idea of showing the data
of TEX’s rating values, the demerits, comes to mind.
Of course, a script can easily document them and I
use a set of ranges for positive and negative values to
categorize the data points. The scripts calculate the
distribution as shown in Fig. 2. Negative values can
occur as an author can specify them via \penalty.
(The paragraphs with negative demerits appear in
the references where URLs are broken by macros.)

The problem that I have with the data is the
lack of a trigger for action. A twenty-line paragraph
with lines all having badness 10 and no hyphenations
has the same demerits as a two-line paragraph with
lines having badnesses of 10 and 0 and a hyphen
after the first line. Which one is better? What can
be done to improve the situation? Is there a problem
at all?

But the statistic is useful to give a general over-
view. When the default values of TEX are active,
paragraphs with demerits in the range 0–5000 can
have only one hyphenated word, which is not at the
end of the second last line: The penalty for a hyphen-
ated word is 502 = 2500 so there cannot be two if the
total demerits are at most 5000 and, of course, the
value of \finalhyphendemerits was not applied.
Similarly the paragraphs in the range 5001–10000
have no stack of two hyphens and no visually in-
compatible lines. The next range might have just
one of such things but only once.

So one can concentrate on the few paragraphs
that have very high values of demerits. But let me
state again: A high value does not imply a problem.
In this article most paragraphs with high demerits
appear in examples. The paragraph above the de-
scription of the fitness classes on the first page is an
exception (see Fig. 11): It has the highest demerits

Tracing paragraphs

(see Fig. 2) because of 13 lines, three have a badness
above 50, one more than 100, one \binoppenalty

and one \hyphenpenalty are charged, and it has
one pair of visually incompatible lines. But only the
break in the formula might trigger a change.

number of words in paragraphs : 8417
max. words in one line : 14
one-word lines (multiline par) : 35

Repeat word >4 chars at start : 3
or end of line : 2

Repeat shorter word at start : 10
or end of line : 7

Longest sequence at start of line : 2
Longest sequence at end of line : 2

Figure 6: Several global counts

More global statistics. Other counts can be cal-
culated. For example, I use an experimental count
of lines that start or end with the same word or syl-
lables as the previous line (see Fig. 6). In this text
most occurrences of stacks of words with at least
five letters appear in the examples. As the longest
sequence is two, there is no problem according to
[2]. Otherwise an author should tie one of the words
to the previous or the following word if the stack
appears at the start or the end of the line, resp. It
seems best to connect the tie to the shortest pos-
sible word or syllable. The number of hyphenated
lines might increase or an overfull line is created if
the stack appears near the beginning of the para-
graph; then the text must be rewritten to avoid it.

Other general statistics can be generated and
they may trigger actions by an author although the
interpretation is more complicated. Such statistics
do not point to a certain situation in the input which
might be changed.

50% successful in the first pass : 100
43% successful in second pass : 86
2% successful without first pass : 5
5% needed an emergency pass : 10

Figure 7: Global statistics about passes

Figure 7 shows the distribution of passes for
this article. But how can this data be interpreted?
The emergency pass is used in several examples and
the list of references where a positive value for the
\emergencystretch is specified. The main question
is: Is the shown distribution between first and sec-
ond pass OK? In [13], p. 123, Donald E. Knuth writes
that in the second volume of The Art of Computer

Programming (TAOCP) only 5% of all paragraphs
needed a second pass and only 2.26% lines ended in
a hyphen. So compared to these data the values are

366 TUGboat, Volume 37 (2016), No. 3

55% successful in the first pass : 108
44% successful in second pass : 87
0% successful without first pass : 0
1% needed an emergency pass : 2

5% very loose lines : 49
20% loose lines : 197
64% decent lines : 643
11% tight lines : 110

11% hyphenated lines : 109
11% lines with implicit hyphen : 105
0% lines with explicit hyphen : 4

with longest sequence : 3
and hyphenated final lines : 18

Figure 8: Global statistics of another article [15]

bad. On the other hand the columns of this journal
are much smaller than the \hsize of the book. It
needs some judgment to decide if the values are ac-
ceptable or if some parameters should be changed.
As I have written another article for this journal
[15] its data can be used for a comparison. Figure 8
shows its values for the data shown in Figs. 7, 4,
and 3. The values of the present article are worse.
But I do not change anything as, for example, some
paragraphs have been designed to make the first pass
fail.

What options does an author have to respond
to unwanted global statistics? Of course, when an
author has to use a given format with given parame-
ters often only rewriting of the text is possible. The
distributions are useful to detect problems in the
general setup. If a small percentage is seen for the

\newtoks\TRsavedLBparameters
\newif\ifprotectLBparameters
\def\SaveallLBparameters{% store 11 parameters
\ifprotectLBparameters
\else\protectLBparameterstrue
{\edef\saveparameters{%

\global\TRsavedLBparameters=\expandafter
{\the\emergencystretch:\the\pretolerance:%
\the\tolerance:\the\linepenalty:%
\the\hyphenpenalty:\the\exhyphenpenalty:%
\the\binoppenalty:\the\relpenalty:%
\the\adjdemerits:\the\doublehyphendemerits:%
\the\finalhyphendemerits}}\saveparameters}\fi}

% usage:\afterassignment\RestoreLBparameters
\def % \emergencystretch=\the\TRsavedLBparameters
\RestoreLBparameters:#1:#2:#3:#4:#5:#6:#7:#8:#9:{%

\pretolerance=#1 \tolerance=#2 \linepenalty=#3
\hyphenpenalty=#4 \exhyphenpenalty=#5
\binoppenalty=#6 \relpenalty=#7
\adjdemerits=#8 \doublehyphendemerits=#9
\finalhyphendemerits=}

% #1: i - s c o ii i- ... (is for --) or \hskip<x>pt
\def\setEMstr(#1){SaveallLBparameters

\setbox0=\hbox{#1}\emergencystretch=\wd0 }

Figure 9: Support macros for Fig. 10

Udo Wermuth

#Pars P Demerits Breakpoints Lines opt L Lines-found B-inf B-min B-max vloos loose decnt tight hyphen seq last

==

1: 1 100 1 1 1 0 1 0 0 1

2: 1 100 1 1 1 0 1 0 0 1

3: 1 100 1 1 1 0 1 0 0 1

4: 2 15554 (0)/25 8 8 0 (0)/8-9 0 69 1 5 2 1/ 1

5: 1 100 1 1 1 0 1 0 0 1

6: 2 40159 (2)/15 8 8 0 (2)/8 0 79 3 5 3/ 3 3

7: 2 120270 (2)/13 8 8 0 (2)/8 3 178 2 2 1 3 2/ 2 2

8: 2 44163 (5)/52 21 21 0 (5)/21 0 89 4 13 4 3/ 3

9: 2 63786 (1)/46 13 13 0 (1)/13-14 0 86 3 6 4 6/ 6 3 Y

10: 2 18559 (2)/16 9 9 0 (2)/9 0 30 4 4 1 3/ 3 Y

11: 2 3565 (0)/9 4 4 0 (0)/4 0 14 1 3 1/ 1

12: 1 100 1 1 1 0 1 0 0 1

13: 2 4290 (1)/4 4 4 0 (1)/4 0 29 2 2 1/ 1

14: 2 545991 (14)/31 13 13 0 (10)/13 0 146 1 3 8 1 1/ 1

Figure 11: Information about the first several paragraphs of this article

first pass check that (1) no non-breakable items like
large hboxes or verbatim strings (as in this article)
are present, (2) \pretolerance is not too low, and
(3) the \hsize is appropriate, i.e., not too small for
justified text. In such situations where the hyphen-
ation passes appear in the expected amount but the
number of hyphenated lines is high, check addition-
ally that (4) the values of the parameters for hy-
phenation are set reasonably.

A few examples. The actions that change some
line-breaking parameters should apply that change
only for a single paragraph. The technically named
try. . . macros in Fig. 10 (supported by those in
Fig. 9) change parameters and with the command
\defaultlinebreaking after an empty line or a
\par the old parameters are reset. In most cases
action A0, i.e., change the wording, is the best solu-
tion; only if this is not possible the actions A2, A3,
or A4 should be tried.

In the first example the action A2, i.e., a lower
\tolerance with \emergencystretch, is applied to
the second paragraph of the introduction. The pa-
rameter to the macro is a string to specify the length
of the \emergencystretch; an “\hskip<dimen>” is

\def\defaultlinebreaking{% reset parameters
\ifprotectLBparameters\protectLBparametersfalse
\afterassignment\RestoreLBparameters
\emergencystretch=\the\TRsavedLBparameters\fi}

\def\tryonlyfirstpass{\SaveallLBparameters
\pretolerance=125 }

\def\tryonlysecondpass{\SaveallLBparameters
\pretolerance=-1 }

\def\trythirdpassD(#1){\setEMstr(#1)%
\tolerance=125 \ignorespaces}

\def\trylesshyphens{\SaveallLBparameters
\hyphenpenalty=75 \doublehyphendemerits=20000
\exhyphenpenalty=55 \finalhyphendemerits=7500 }

Figure 10: Set of useful macros

TUGboat, Volume 37 (2016), No. 3 367

possible too. The characters “i-sco” cover the range
of 5–9 basic units of width in cmr10; see [9]. This
makes the additional stretchability individual to the
paragraph.

Example 3: TEX input

\trythirdpassD(oo)
The tracing parameters might be classified ...

TEX output

The tracing parameters might be classified
into different groups: Some look at the settings
of the installation, like \tracingstats, others are
used mainly for developers, like \tracingmacros,
and some (or all) can be used to get a better un-
derstanding how TEX operates. For example, the
parameter \tracingparagraphs gives detailed in-
sights into the inner workings of TEX’s line-breaking
algorithm.

The paragraph is one line longer; two lines are
loose, five decent, then follows a tight and a decent
line. No visually incompatible pair is reported. The
documented badness values are 91, 43, 1, 7, 5, 8, 3,
19, and 0 instead of 3, 25, 171, 178, 37, 21, 41, and
28. Six lines have a lower value than before. But the
reporting does not include the additional stretch-
ability. The true badness values can be seen using
\hbadness=-1. Then the line badnesses are 1019,
239, 11, 69, 18, 41, 53, 19, and 0; two visually incom-
patible pairs are present. The first line is so bad that
TEX reports an underfull hbox. An author should
expect looser lines if a paragraph is lengthened.

\def\trylongerparD(#1){\setEMstr(#1)%
\finalhyphendemerits=0 \adjdemerits=5000
\looseness=1 \ignorespaces}

Figure 12: Stronger than \looseness=1

The macros can be combined and more macros
are possible, for example, Fig. 12 increases forces

Tracing paragraphs

--#Par---(#Lines [#per pass Looseness+# for min demerits])---

#Line Badness Penalty Demerits FitClass -? ST #w

==

--1---(1 [1 L0+1])-----------------------------------

1: 0 -10000 100 decent 2 Tracing paragraphs

--2---(1 [1 L0+1])-----------------------------------

2: 0 -10000 100 decent 2 [] Udo Wermuth

--3---(1 [1 L0+1])-----------------------------------

3: 0 -10000 100 decent 1 Abstract

--4---(8 [(0)/8-9 L0+8])-----------------------------

4: 0 50 2600 decent Y 9 The pro-gram T[]X pro-vides more than a dozen con-

5: 29 0 1521 loose 6 trol words for di-ag-nos-tic and de-bug-ging pur-poses.

6: 0 0 100 decent 9 Some of them are used of-ten, oth-ers han-dle spe-cial

7: 9 0 361 decent 9 tasks and are less fre-quently ap-plied. In the lat-ter

8: 1 0 121 decent 5 case falls the pa-ram-e-ter \tracingparagraphs that

9: 57 0 4489 tight 10 seems to be a hid-den gem. This ar-ti-cle ex-plains what

10: 1 0 121 decent 10 the pa-ram-e-ter trig-gers if set and how an au-thor can

11: 69 -10000 6241 tight 10 use the trace data to check and im-prove his text.

--5---(1 [1 L0+1])-----------------------------------

12: 0 -10000 100 decent 1 1 Introduction

--6---(8 [(2)/8 L0+8])-------------------------------

13: 0 0 100 decent 8 The T[]X soft-ware, de-scribed in T[]X : The Pro-gram

Figure 13: Information about the lines of the first paragraphs of the article

to lengthen a paragraph, i.e., it implements action
A3. Note that the paragraph does not change with
a simple \looseness=1.

Example 3 continued: TEX input

\trylongerparD(i)
The tracing parameters might be classified ...

TEX output

The tracing parameters might be classified into
different groups: Some look at the settings of the
installation, like \tracingstats, others are used
mainly for developers, like \tracingmacros, and
some (or all) can be used to get a better understand-
ing how TEX operates. For example, the param-
eter \tracingparagraphs gives detailed insights
into the inner workings of TEX’s line-breaking al-
gorithm.

The typical pattern of \looseness=1 appears:
The new line contains only the last word or a part
of it. But the result looks better than before.

Next, stacks of hyphens are removed.

Example 4: TEX input

\trylesshyphens\noindent
The program \TeX, described in \TP\ [...

TEX output

The TEX software, described in TEX : The Program

[8], implements several control sequences to show
information about its work. The commands and
parameters form a set of powerful tools to help di-
agnose errors. TEX itself contains nine primitive in-
teger parameters for tracing ([6, p. 273]) and four
primitive show commands ([6, p. 279]). The plain

368 TUGboat, Volume 37 (2016), No. 3

format defines additional macros ([6, p. 364]).

The original text appears as the first paragraph
of section 1. It is one of the paragraphs with the
longest sequence of hyphenated lines in this text (see
Fig. 11). The best solution is to insert “the book” af-
ter “in” in the first line, but here \trylesshyphens
is also successful. Sometimes this command does not
work, for example, if the stack is at the beginning of
the paragraph; more penalties and demerits might
not change the first line break. The macro of Fig. 12
might help; next it is applied to a statement in [12],
p. 358, where \trylesshyphens is not successful. I
use \trylongerparD(Ar) for the second paragraph.

Example 5: TEX output

So instead, I worked only at Stanford, at the Ar-
tificial Intelligence Laboratory with the very primi-
tive equipment there. We did have television cam-
eras, and my publisher, Addison-Wesley, was very
helpful — they sent me the original press-printed
proofs of my book, from which The Art of Com-

puter Programming had been made. The process in
the 60s . . .

So instead, I worked only at Stanford, at the
Artificial Intelligence Laboratory with the very
primitive equipment there. We did have television
cameras, and my publisher, Addison-Wesley, was
very helpful — they sent me the original press-
printed proofs of my book, from which The Art

of Computer Programming had been made. The
process in the 60s . . .

Details for paragraphs and lines. How to find
the word or section in the text which is responsible

Udo Wermuth

for a bad value in the statistics? My solution involves
the scripts creating two additional files, one with
the data about the paragraphs, the other listing the
values of all lines (see Figs. 11 and 13).

Figure 11 shows the following information for
each paragraph in one line: a sequential number,
the number of passes, the number of breakpoints
in each pass, the number of lines used, the optimal
number of lines, the active looseness, lines found in
each pass, number of lines with infinite badness, the
minimal badness, the maximal badness, the number
of lines that are very loose, loose, decent, and tight,
the number of hyphens and implicit hyphens, the
longest sequence of hyphenated lines, and a flag to
indicate if the second last line is hyphenated. En-
tries in parentheses stand for failed passes, slashes
separate the data of the passes. Figure 13 lists all
the details about the lines separated by dashed lines
that repeat some data of the paragraph. The dashed
lines show the number of the paragraph, the num-
ber of lines created (for all passes), lines found per
pass, the active looseness, and the optimal number
of lines. For each line the line number, the line bad-
ness, the penalty at the end of the line, the line
demerits, the fitness class, three flags for a hyphen
at the end of the line, stacks at the start or end of
the line, an approximation to the number of words
and the content of the line is output.

To locate, for example, paragraphs that have
the longest sequence of lines that end with a hyphen,
check the column “seq” in the list of paragraphs
(Fig. 11) and go to the entries for this paragraph
in the list of lines (Fig. 13) to see the text. In some
cases the list of lines can be consulted directly. For
example, in the column “FitClass” the word “tight”
is moved to the left and the word “loose” to the
right. This helps to find visually incompatible lines.

My Rexx scripts output probably too much
data. Everything that the trace data shows is
printed. At least it serves as educational material.

5 Remarks about \looseness

Let’s look a little bit closer at the integer parameter
\looseness and how it influences the line-breaking
algorithm and as a consequence also the trace data
output. It would be nice to inform an author about
the number of lines his paragraph can have.

Example 2 has shown that the looseness does
not force the algorithm to make a second pass. Only
when a pass cannot provide the desired number of
lines does TEX start the next pass because the pre-
vious pass counts as failed. Therefore, some state-
ments in [14] are wrong in general.

TUGboat, Volume 37 (2016), No. 3 369

In this section the following facts are shown.

1. In different passes a paragraph can have differ-
ent number of lines.

2. The use of looseness might result in the execu-
tion of a second or third pass.

3. A possible emergency pass is not executed if a
previous pass is successful.

4. A possibility to shorten a paragraph with the
same pass is not always reported explicitly in
the trace data.

5. Similarly, a possibility to lengthen a paragraph
might not be reported.

6. The use of looseness might result in different
line breaks even if no additional pass is run.

7. This can also happen with a “neutral” par-
shape.

Different number of lines in the passes. When
TEX has successfully finished a pass, it builds from
the feasible breakpoints the paragraph with the low-
est total demerits. During this process the best num-
ber of lines N for the paragraph is also determined.
A non-zero looseness forces TEX’s algorithm to go
again through the feasible breakpoints but this time
it picks those that change the number of lines by
the given value of \looseness. If this is not pos-
sible, the pass fails and, if it is not the final pass,
the next pass is executed. The last pass outputs the
paragraph even in a failed situation. The number of
lines is then the best approximation that TEX has
found to the sum of lines for lowest total demerits
and the looseness value. Note that the number N

is determined individually for each pass. The value
for the second pass might be equal to the value of
a successful first pass. But other cases are possible
too, as the following example shows.

Example 6: TEX input

Hi \TeX. Tell me how is the following long
word hyphenated: ‘antidisestablishmentarianism’?
Now do it.

\noindent Hi! \TeX! Tell me: How is the
following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’?
I am sure that you are an expert in hyphenation,
right \TeX?

\smallskip \pretolerance=-1

Hi \TeX. Tell me how is the following long . . .

TEX output

Hi TEX. Tell me how is the following long word
hyphenated: ‘antidisestablishmentarianism’? Now do
it.

Hi! TEX! Tell me: How is the following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?

Tracing paragraphs

Hi TEX. Tell me how is the following long word hy-
phenated: ‘antidisestablishmentarianism’? Now do it.
Hi! TEX! Tell me: How is the following long word bro-
ken ’pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX?

The first two paragraphs are typeset in the first
pass. When that pass is suppressed, as in the third
and fourth paragraphs, the pass which tries hyphen-
ation is the only available pass. As the output shows,
instead of three lines once two and once four are
built. Larger differences between passes are possi-
ble as [14] points out. In the case that the second
pass creates N lines and the first pass N + 2, a
\looseness=1 which the first pass cannot fulfill but
the second can result in a shorter paragraph—and
TEX claims success. The shortest paragraph with
this property that I was able to construct with text
in cmr9 and an \hsize of 225 pt has N = 39.

Therefore, if \looseness=-1 is applied to the
second paragraph of example 6 with three lines the
result is a successful (based on TEX’s rating) sec-
ond pass that shortened a four line paragraph to
three lines. Even if \emergencystretch has a posi-
tive value TEX does not run a third pass. The para-
graph looks identical to the output of the first pass.

An emergency pass is made if the second pass
fails to create the requested number of lines.

Example 7: TEX input

\pretolerance=-1

\looseness=1 \noindent Hi! \TeX! Tell me:
How is the following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’?
I am sure that you are an expert in hyphenation,
right?

\emergencystretch=6.75pt

\looseness=1 \noindent Hi! \TeX! Tell me: . . .

TEX output

Hi! TEX! Tell me: How is the following long word bro-
ken ’pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right?
Hi! TEX! Tell me: How is the following long word
broken ’pneumonoultramicroscopicsilicovolcanoconio-
sis’? I am sure that you are an expert in hyphenation,
right?

The pass can build only three lines, so TEX exe-
cutes for the second paragraph an emergency pass as
the \emergencystretch is positive. The next exam-
ple specifies a positive value for \emergencystretch
but no emergency pass is executed.

Example 8: TEX input

\tracingparagraphs=1 \emergencystretch=4.5pt

\looseness=1
This is a short paragraph and two words can

370 TUGboat, Volume 37 (2016), No. 3

have a hyphen in it. The rest of the text
is made up of short words only. Well, I
think the first sentence is wrong. Wait
then one more must be wrong. Two are wrong.

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of
short words only. Well, I think the first sentence is
wrong. Wait then one more must be wrong. Two are
wrong.

As the trace data proves in line 17 the line-
breaking algorithm is successful in the first pass. It
creates a paragraph of four lines. In order to increase
this number TEX performs a second pass.

Example 8 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100

. . .

16. Wait then one more must be wrong. Two are
wrong.

17. @\par via @@4 b=0 p=-10000 d=100
18. @@5: line 4.2- t=2509 -> @@4
19. @secondpass
20. []\ninerm This is a short para-graph and two

words can have
21. @ via @@0 b=0 p=0 d=100
. . .

39. Wait then one more must be wrong. Two are
40. @ via @@5 b=12 p=0 d=10484
41. @@7: line 4.2 t=60914 -> @@5
42. wrong.
43. @\par via @@6 b=0 p=-10000 d=100
44. @@8: line 4.2- t=2509 -> @@6
45. @\par via @@7 b=0 p=-10000 d=100
46. @@9: line 5.2- t=61014 -> @@7

No information in the trace data. The infor-
mation in the trace of example 1 that the paragraph
could be typeset with six instead of seven lines was
part of the construction of the example. Here are
some examples which demonstrate that this is not
always reported. The first example uses a negative
value for \looseness.

Example 9: TEX input

\tracingparagraphs=1

This is a short paragraph and two words can
have a hyphen in it. The rest of the text
is made up of short words only. I think the
first sentence is wrong. Wait then the next
one must be wrong too. Two are wrong, or?

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. I think the first sentence is wrong. Wait
then the next one must be wrong too. Two are wrong,
or?

Udo Wermuth

The line-breaking algorithm finds seven feasi-
ble breakpoints and the reported breaks are for a
paragraph of five lines. It is not reported that the
paragraph can be set in four lines.

Example 9 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100
4. @@1: line 1.2 t=100 -> @@0
5. a
6. @ via @@0 b=19 p=0 d=841
7. @@2: line 1.3 t=841 -> @@0
8. hyphen in it. The rest of the text is made

up of short
9. @ via @@1 b=0 p=0 d=100

10. @ via @@2 b=4 p=0 d=196
11. @@3: line 2.2 t=200 -> @@1
12. words only. I think the first sentence is

wrong. Wait
13. @ via @@3 b=24 p=0 d=1156
14. @@4: line 3.1 t=1356 -> @@3
15. then
16. @ via @@3 b=89 p=0 d=9801
17. @@5: line 3.3 t=10001 -> @@3
18. the next one must be wrong too. Two are

wrong,
19. @ via @@4 b=1 p=0 d=121
20. @@6: line 4.2 t=1477 -> @@4
21. or?
22. @\par via @@5 b=0 p=-10000 d=100
23. @\par via @@6 b=0 p=-10000 d=100
24. @@7: line 5.2- t=1577 -> @@6

Nevertheless, the setting \looseness=-1 suc-
ceeds in the first pass and a four line paragraph is
output.

Example 9 continued: TEX input

\tracingparagraphs=1

\looseness=-1
This is a short paragraph and two words can . . .

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. I think the first sentence is wrong. Wait then
the next one must be wrong too. Two are wrong, or?

The log file contains only one additional line,
the feasible breakpoint for a shorter paragraph in
line 23.

Example 9 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100

. . .

21. or?
22. @\par via @@5 b=0 p=-10000 d=100
23. @@7: line 4.2- t=10101 -> @@5
24. @\par via @@6 b=0 p=-10000 d=100
25. @@8: line 5.2- t=1577 -> @@6

TUGboat, Volume 37 (2016), No. 3 371

The next example sets the looseness parame-
ter to 1, i.e., the number of lines for the paragraph
should be one more than the optimum.

Example 10: TEX input

\tracingparagraphs=1

Let’s look at another example. We saw that
$\root3\of8=2$ and $2^3=8$. What happens when 2
and 3 are switched? The equal sign is wrong! So
write $\root2\of8\neq3$ and $3^2\neq8$.

\looseness=1
Let’s look at another example. We saw that . . .

TEX output

Let’s look at another example. We saw that 3
√
8 = 2

and 23 = 8. What happens when 2 and 3 are switched?
The equal sign is wrong! So write 2

√
8 6= 3 and 32 6= 8.

Let’s look at another example. We saw that 3
√
8 = 2

and 23 = 8. What happens when 2 and 3 are switched?
The equal sign is wrong! So write 2

√
8 6= 3 and 32 6=

8.

Again only one additional feasible breakpoint
appears in the trace for the longer paragraph (see
line 38). In both cases only the first pass is executed.

Example 10 continued: Log file contents

1. @firstpass
2. []\ninerm Let’s look at another example. We

saw that $[][] =
3. @\penalty via @@0 b=0 p=500 d=250100
4. @@1: line 1.2 t=250100 -> @@0
5. 2$
6. @\math via @@0 b=73 p=0 d=6889
7. @@2: line 1.3 t=6889 -> @@0
8. and $2[] = 8$. What happens when 2 and 3

are switched?
9. @ via @@1 b=53 p=0 d=3969

10. @ via @@2 b=0 p=0 d=100
11. @@3: line 2.2 t=6989 -> @@2
12. The equal sign is wrong! So write $[][]

\ninesy 6\ninerm = 3$ and $3[] \ninesy
6\ninerm =

13. @\penalty via @@3 b=23 p=500 d=251089
14. @@4: line 3.1 t=258078 -> @@3
15. 8$.
16. @\par via @@3 b=0 p=-10000 d=100
17. @\par via @@4 b=0 p=-10000 d=100
18. @@5: line 3.2- t=7089 -> @@3
19.

20. @firstpass
. . .

35. @\par via @@3 b=0 p=-10000 d=100
36. @@5: line 3.2- t=7089 -> @@3
37. @\par via @@4 b=0 p=-10000 d=100
38. @@6: line 4.2- t=258178 -> @@4

If we want more information in the trace data,
we have to find a way to have TEX report feasible
breakpoints without setting \looseness. Unfortu-
nately, this is not possible. A non-zero \looseness

does two things: a) it changes the number of “easy”

Tracing paragraphs

lines to TEX’s maximum and b) it forces the exe-
cution of a slightly more complicated loop to find
breakpoints. The code of this loop is shown in § 875
of [8] and it is only executed if the looseness param-
eter has a non-zero value (§ 873). But as both ex-
amples show, the possibility to shorten or lengthen
a paragraph seems to be indirectly included in the
end-of-par break candidates. The line number of the
feasible breakpoints associated with an end-of-par
break candidate can simply be increased by one and
that value gives a possible alternative.

A digression. The change in item a) can be simu-
lated and it has an interesting side effect: TEX might
change the output of a paragraph with a non-zero
\looseness even if the looseness command cannot
be obeyed.

Example 11: TEX input

\tracingparagraphs=1 \pretolerance=-1

A one! Or two! Oh! A one! A two! A three!
It is a lovely day and I’ve got a feeling!
A new feeling! Yes it’s a sunny day! Good
day! Sunshine! Sunshine! Sun! I’m in ---
hey, the text of the song sounds familiar.

\looseness=-1
A one! Or two! Oh! A one! A two! A three! . . .

TEX output

A one! Or two! Oh! A one! A two! A three! It is a
lovely day and I’ve got a feeling! A new feeling! Yes it’s
a sunny day! Good day! Sunshine! Sunshine! Sun! I’m
in — hey, the text of the song sounds familiar.

A one! Or two! Oh! A one! A two! A three! It is
a lovely day and I’ve got a feeling! A new feeling! Yes
it’s a sunny day! Good day! Sunshine! Sunshine! Sun!
I’m in — hey, the text of the song sounds familiar.

The line-breaking algorithm uses an internal
counter to mark certain lines as “easy.” TEX’s al-
gorithm saves space and time by the fact that after
a certain point all lines have the same length ([8,
§ 818]) and this point is given by that counter. As
stated in a), the counter is set to its maximum if
\looseness is used. In example 2 we observed that
the sequence of breakpoints in the trace output was
changed compared to example 1. This effect has to
do with the counter for easy lines (see [8, § 819]). As
TEX picks the first break candidate that minimizes
the total demerits the sequence is important.

The effect is seen not only when \looseness

is non-zero, as the internal counter for easy lines
is also set by \hangindent and \parshape (see
[8, §§ 848–849]). A “neutral” \parshape specifica-
tion—all lines have length \hsize and there are
more lines than the paragraph will have— increases
the counter for easy lines high enough to stimulate
the same output as a non-zero value for \looseness.

372 TUGboat, Volume 37 (2016), No. 3

A five-line parshape outputs the paragraph in the
style of the second paragraph above.

Example 12: TEX input

\def\fivelineparshape{\parshape 5 0pt \hsize
0pt \hsize 0pt \hsize 0pt \hsize 0pt \hsize }
\tracingparagraphs=1

A one! Or two! Oh! A one! A two! A three! . . .

\fivelineparshape
A one! Or two! Oh! A one! A two! A three! . . .

TEX output

A one! Or two! Oh! A one! A two! A three! It is a
lovely day and I’ve got a feeling! A new feeling! Yes it’s
a sunny day! Good day! Sunshine! Sunshine! Sun! I’m
in — hey, the text of the song sounds familiar.

A one! Or two! Oh! A one! A two! A three! It is
a lovely day and I’ve got a feeling! A new feeling! Yes
it’s a sunny day! Good day! Sunshine! Sunshine! Sun!
I’m in — hey, the text of the song sounds familiar.

Let’s look at the trace data. In this example two
different sets of line breaks produce exactly the same
total demerits, but in the first the line badnesses are
2, 1, 0, and in the second, 0, 2, 1.

Example 12 continued: Log file contents

1. @firstpass
2. []\ninerm A one! Or two! Oh! A one! A two!

A three!
3. @ via @@0 b=57 p=0 d=4489
4. @@1: line 1.1 t=4489 -> @@0
5. It
6. @ via @@0 b=7 p=0 d=289
7. @@2: line 1.2 t=289 -> @@0
8. is
9. @ via @@0 b=0 p=0 d=100

10. @@3: line 1.2 t=100 -> @@0
11. a
12. @ via @@0 b=2 p=0 d=144
13. @@4: line 1.2 t=144 -> @@0
14. lovely day and I’ve got a feeling! A new

feeling!
15. @ via @@1 b=1 p=0 d=121
16. @ via @@2 b=40 p=0 d=2500
17. @@5: line 2.1 t=2789 -> @@2
18. @@6: line 2.2 t=4610 -> @@1
19. Yes
20. @ via @@2 b=3 p=0 d=169
21. @ via @@3 b=2 p=0 d=144
22. @ via @@4 b=25 p=0 d=1225
23. @@7: line 2.1 t=1369 -> @@4
24. @@8: line 2.2 t=244 -> @@3
25. it’s
26. @ via @@3 b=64 p=0 d=5476
27. @ via @@4 b=1 p=0 d=121
28. @@9: line 2.2 t=265 -> @@4
29. @@10: line 2.3 t=5576 -> @@3
30. a
31. @ via @@4 b=64 p=0 d=5476
32. @@11: line 2.3 t=5620 -> @@4
33. sunny day! Good day! Sunshine! Sunshine!
34. @ via @@5 b=8 p=0 d=324
35. @ via @@6 b=8 p=0 d=324

Udo Wermuth

36. @@12: line 3.2 t=3113 -> @@5
37. Sun!
38. @ via @@7 b=1 p=0 d=121
39. @ via @@8 b=1 p=0 d=121
40. @ via @@9 b=62 p=0 d=5184
41. @ via @@10 b=62 p=0 d=15184
42. @@13: line 3.1 t=5449 -> @@9
43. @@14: line 3.2 t=365 -> @@8
44. I’m
45. @ via @@9 b=0 p=0 d=100
46. @ via @@10 b=0 p=0 d=100
47. @ via @@11 b=5 p=0 d=225
48. @@15: line 3.2 t=365 -> @@9
49. in
50. @ via @@11 b=1 p=0 d=121
51. @@16: line 3.2 t=5741 -> @@11
52. --- hey, the text of the song sounds

familiar.
53. @\par via @@12 b=2 p=-10000 d=144
54. @\par via @@13 b=0 p=-10000 d=100
55. @\par via @@14 b=0 p=-10000 d=100
56. @\par via @@15 b=0 p=-10000 d=100
57. @\par via @@16 b=0 p=-10000 d=100
58. @@17: line 4.2- t=465 -> @@15
59.

60. @firstpass
61. []\ninerm A one! Or two! Oh! A one! A two!

A three!
62. @ via @@0 b=57 p=0 d=4489
63. @@1: line 1.1 t=4489 -> @@0
64. It
. . .

74. @ via @@2 b=40 p=0 d=2500
75. @ via @@1 b=1 p=0 d=121
76. @@5: line 2.1 t=2789 -> @@2
77. @@6: line 2.2 t=4610 -> @@1
78. Yes
. . .

112. @\par via @@16 b=0 p=-10000 d=100
113. @\par via @@15 b=0 p=-10000 d=100
114. @\par via @@13 b=0 p=-10000 d=100
115. @\par via @@14 b=0 p=-10000 d=100
116. @\par via @@12 b=2 p=-10000 d=144
117. @@17: line 4.2- t=465 -> @@14

Look at lines 53–58 and 112–117: the best final
feasible breakpoints select different previous feasible
breakpoints, as the order of the break candidates
is not the same. In other places of the trace this
happens too but without consequence.

References

[1] Martin Budaj, findhyph, V3.4, 18.10.2015
http://ctan.org/pkg/findhyph

[2] The Chicago Manual of Style, th edition,
Chicago, Illinois: University of Chicago Press, 2003

[3] Patrick Gundlach, showhyphens, V0.5c, 19.02.2016
http://ctan.org/pkg/showhyphens

[4] Patrick Gundlach, lua-check-hyphen, V0.4,
02.04.2016
http://ctan.org/pkg/lua-check-hyphen

TUGboat, Volume 37 (2016), No. 3 373

[5] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines,” Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [13], 67–155

[6] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984

[7] Donald E. Knuth, “A torture test for TEX,” Stan-
ford Computer Science Report STAN-CS-84-1027,
Stanford, California: Stanford University, 1984

[8] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston, Massachu-
setts: Addison-Wesley, 1986

[9] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[10] Donald E. Knuth, “The DVItype processor,” in
TEXware, Stanford Computer Science Report
STAN-CS-86-1097, Stanford, California: Stan-
ford University, 1986 (David R. Fuchs designed the
first program, Peter Breitenlohner helped with the
latest revisions)
http://ctan.org/pkg/dvitype

[11] Donald E. Knuth, “Exercises for TEX: The Pro-
gram”, TUGboat 11:2 (1990), 165–170; answers
are given in: TUGboat 11:4 (1990), 499–511;
reprinted together as Chapter 10 in [13], 197–223
(exercise 28 is in the reprint exercise 25)
http://tug.org/TUGboat/tb11-2/tb28knut.pdf

http://tug.org/TUGboat/tb11-4/tb30knut-
exercises.pdf

[12] Donald E. Knuth, “CSTUG, Charles University,
Prague, March 1996: Questions and Answers with
Prof. Donald E. Knuth,” TUGboat 17:4 (1996),
355–367; reprinted as Chapter 32 in [13], 601–624
http://tug.org/TUGboat/tb17-4/tb53knuc.pdf

[13] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999

[14] Frank Mittelbach, “\looseness on the loose,”
TUGboat 29:2 (2008), 334; also published in
Die TEXnische Komödie 19:4 (2007), 41; and in:
“Pearls of TEX programming,” TUGboat 26:3
(2005), 256–263, as “\looseness not so loose”
(p. 259)
http://tug.org/TUGboat/tb29-2/tb92mitt.pdf

[15] Udo Wermuth, “Typesetting the ‘Begriffsschrift’
by Gottlob Frege in plain TEX”, TUGboat 36:3
(2015), 243–256
http://tug.org/TUGboat/tb36-3/tb114wermuth.
pdf

⋄ Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Tracing paragraphs

