
TUGboat, Volume 30 (2009), No. 1 107

LATEX3 programming: External perspectives

Joseph Wright

Abstract

The current experimental LATEX3 packages provide
a new, documented programming interface for TEX.
The key ideas implemented in this new interface are
highlighted in this article.

1 Introduction

Modifying the behaviour of LATEX2ε often requires
a combination of user macros, internal LATEX macro
and TEX primitives. This makes even trivial modifi-
cations of document layout potentially difficult, even
for the experienced LATEX user. The differing syntax
used by TEX primitives and the LATEX kernel only
add to the confusion here.

The first step to develop a new LATEX kernel is
therefore to address how the underlying system is
programmed. Rather than the current mix of LATEX
and TEX macros, the experimental LATEX3 system
provides its own consistent interface to all of the
functions needed to control TEX. A key part of this
work is to ensure that everything is documented, so
that LATEX users can work efficiently without needing
to be familiar with the internal nature of the kernel
or with plain TEX.

The current kernel also suffers from the mix-
ing of design commands with structural code. Thus
changing a layout element often requires modifying
a kernel code block (or loading a package which pro-
vides an interface to achieve this). The second chal-
lenge for LATEX3 is therefore separation of the basic
tools of the kernel from the design of documents.

This short overview article highlights the key
developments to date in LATEX3. It is based on
my own experience working with the new tools for
writing packages, and a talk given recently to the
UK TEX Users Group.

2 The components of LATEX3

Currently, the experimental LATEX3 packages are
designed to be used “on top of” LATEX2ε. This avoids
needing to wait for the entire kernel to be finished
before testing what is written.

The most developed part of the code is the
expl3 (“experimental LATEX3”) bundle, the core of the
new kernel providing the new programming interface.
The new language is fully documented in the file
source3.pdf, which contains some notes for the
experienced (LA)TEX programmer.

Built on top of expl3 is the xparse package. This
is meant to be a “bridge” between the internal and

user parts of the new kernel. The xparse package
is used to create new user macros, in a much more
controlled way than is possible using \newcommand.

More experimental than xparse are various other
“xpackages”. These are designed to explore new ap-
proaches to layout and document design for LATEX3.

The most complete part of LATEX3 is the expl3
bundle. The rest of this article is focussed mainly
on the new internal syntax introduced in expl3.

3 A new internal syntax

LATEX3 does not use @ as a “letter” for defining inter-
nal macros. Instead, the symbols _ and : are used
in internal macro names to provide structure. In
contrast to the plain TEX format and the LATEX2ε
kernel, these extra letters are used only between parts
of a macro name (no strange vowel replacement).

LATEX3 separates macros which do something
(functions) from ones which only store data. The
general form of an internal function in LATEX3 is
\〈module〉_〈function〉:〈arg-spec〉.
• The 〈module〉 prefix is applied to almost all
macros. For a package, it will typically be the
package name; the kernel is split into a number
of modules, each with its own name.
• The name of the 〈function〉 should give a good
description of what it does: this may contain
one or more _ characters to divide the name
into logical units.
• The concept of the 〈arg-spec〉 is potentially con-
fusing to existing (LA)TEX programmers. This
argument specifier describes the arguments ex-
pected by the function. In most cases, each
argument is represented by a single letter. The
letter, including its case, conveys information
about the type of argument required. The use of
the 〈arg-spec〉 is illustrated later in this article.

3.1 Primitives renamed

All of the TEX primitives are given new names by
expl3, although many are not intended to be used
outside of the LATEX3 kernel. Instead, a number of
LATEX wrappers for primitives are provided, so that
the argument syntax is consistent.

At the most basic level, the \fi primitive be-
comes \fi:, indicating no arguments are required.

A more complex example is \ifdefined (an
ε-TEX primitive), which becomes \if_cs_exist:N.
\if_cs_exist:N \Macro_One

% Do Stuff
\fi:

Here, the 〈arg-spec〉 contains one letter, showing that
only one argument is required. This argument is of

LATEX3 programming: External perspectives

108 TUGboat, Volume 30 (2009), No. 1

type N, meaning that it should be a single token not
surrounded by braces.

3.2 Example kernel functions

Renaming primitives helps to keep the new syntax
consistent, but does not show why the argument
specifier is useful. This is perhaps best seen by
looking at some of the functions provided by expl3.

By using the argument specifier, the new kernel
provides families of related functions which avoid the
need for complex \expandafter runs. For example,
the TEX primitive \let can only be used with a
macro name and a single token; no braces. In LATEX3,
the family of \let-like macros contains:
\cs_set_eq:NN \Macro_One \Macro_Two
\cs_set_eq:Nc \Macro_One {Macro_Two}
\cs_set_eq:cN {Macro_One} \Macro_Two
\cs_set_eq:cc {Macro_One} {Macro_Two}

where an argument specified as c is to be given in
braces and should expand to a csname. This is much
clearer than the equivalent plain TEX constructions;
taking \cs_set_eq:Nc as an example:
\expandafter\let\expandafter\Macro_One

\csname Macro_Two\endcsname

The specifiers n (no expansion), o (expand once)
and x (\edef-like full expansion) allow large families
of related functions to be created easily, so that
using the results is simplified. Thus we can create a
macro \Macro_One:nn, then create \Macro_One:no,
\Macro_One:xn and so on very rapidly. Later, we
will see how the v and V argument specifiers add
even more power to this concept.

The argument specifier concept also makes test-
ing much easier. As an example, the new kernel
provides three tests related to the \@ifundefined
macro:
\cs_if_exist:cT {csname} {true}
\cs_if_exist:cF {csname} {false}
\cs_if_exist:cTF {csname} {true} {false}

In all three cases, the first argument will be converted
to a csname (the c specifier). The first two functions
then require one more argument, either T or F. As
might be expected, these are executed if the test is
true or false, respectively. The third function (ending
:cTF) has both a true and false branch. By providing
tests with the choice of T, F and TF arguments, empty
groups in code can be avoided and meaning is much
more obvious.

4 Data storage

In LATEX3, macros which carry out some process are
called functions, and all contain an argument speci-
fier. Macros used for storage are handled separately,

to help to make code cleaner and easier to read. To
further aid the programmer, expl3 defines several
new data types:

• token lists (tl),
• comma lists (clist),
• property lists (prop),
• sequences (seq),

in addition to the existing types, which are renamed:

• boolean switches (bool),
• counters (int),
• skips (skip),

and so on.
The name “token list” may cause confusion, and

so some background is useful. TEX works with to-
kens and lists of tokens, rather than characters. It
provides two ways to store these token lists: within
macros and as token registers (toks). LATEX3 retains
the name “toks” for the later, and adopts the name
“token lists” (tl) for macros used to store tokens. In
most circumstances, the tl data type is more conve-
nient for storing token lists.

The other new variable types are all essentially
lists of items separated by a special token. The na-
ture of the separator determines the type of variable
and what functions apply. For example, a comma
list is, as you might expect, a set of tokens separated
by commas.

These are all created explicitly as either local or
global, according to a prefix \l_ or \g_. For example,
a local tl may be named:

\l_mymodule_myname_tl

while a global tl looks like this:

\g_mymodule_myname_tl

The other variable types follow the same pattern,
with the appropriate type identified in the variable
name.

As well as the new data types, expl3 provides
a range of functions for manipulating data. Often,
these had to be coded by hand when using LATEX2ε.
For example, \tl_elt_count:N is available to count
the number of elements (often characters) in a token
list.

5 Expanding variables

When coding in (LA)TEX, the need to access data in
variables is made more complicated by the different
possibilities for recovering information later. For
example, if three macros are defined as
\def\tempa{Some text}
\def\tempb{\tempa}
\def\tempc{\tempb}

Joseph Wright

TUGboat, Volume 30 (2009), No. 1 109

then there are two likely scenarios for using the
information in \tempc:

• Use of the value that \tempc contains (in this
case \tempb);
• Exhaustive expansion of \tempc to use the un-

expandable token list it represents (in this case
“Some text”).

The situation is further complicated as macros do
not need an accessor function, whereas other TEX
variables (toks, counts, skips) do. This leads to the
need for carefully-constructed \expandafter runs in
(LA)TEX, in order to get the content needed.

To avoid this, LATEX3 provides two argument
specifiers which will always return the content of
a variable. The V specifier requires the name of a
variable, and returns the content. For example, if we
define two variables, one of type tl and the other of
type toks,

\toks_set:Nn \l_my_toks { Text \mymacro }
\tl_set:Nn \l_my_tl { Text \mymacro }

and pass them to some function \foo_bar:V,

\foo_bar:V \l_my_toks
\foo_bar:V \l_my_tl

both sets of input will result in “Text \mymacro”
being passed as the argument to the “underlying”
function (explained below) \foo_bar:n. The V spec-
ifier can be applied to any LATEX3 variable: this
means that the programmer does not have to worry
about how data is stored at a TEX level. A function
using a V specifier will always receive the content of
the variable passed.

The second “variable” specifier is v. This con-
verts its argument to a csname, then recovers the
content of the resulting variable and passes the con-
tent. Thus we might use a \foo_bar:v as:

\foo_bar:v { l_my_toks }
\foo_bar:v { l_my_tl }

with the same result as the previous example.
The two variable specifiers are very powerful.

By using them, the programmer can almost entirely
avoid the need to worry about the order of expansion
when using stored information.

In LATEX3, functions which differ only in the
argument specifier should carry out the same under-
lying operation: the only difference should be the
processing of arguments prior to applying the func-
tion. Normally, the “underlying” function will act
without argument expansion (taking n or N type argu-
ments). Thus \foo_bar:c will normally be defined
as expanding a csname and passing it to \foo_bar:N.

6 Other key features

The new kernel will require the ε-TEX extensions.
Thus, those new primitives are always available when
working with LATEX3. For example, \unexpanded is
part of the expansion module, as \exp_not:n.

Boolean switches in TEX and LATEX2ε use the
\iftrue and \iffalse primitives. This can lead to
problems nesting (! Incomplete \if...). To avoid
this, LATEX3 does not create switches in the same way.
This means that all of the switches use exclusively
LATEX syntax, and require an “access” function.
\bool_if:NT \l_example_bool { true code }
\bool_if:NF \l_example_bool { false code }
\bool_if:NTF \l_example_bool { true code }

{ false code }

One of the most useful features of the new coding
syntax is the treatment of white space. The literal
space character () is ignored inside code blocks,
meaning that the text can be laid out to aid ease
of reading. When a space is required in the output,
a tilde (~) can be used. In this context, ~ is not a
“hard” space, but a character with category code 10.
The ability to finish lines without worrying about
omitting or including % is highly welcome!

7 Conclusions

The current LATEX3 modules provide a new and pow-
erful programming language for TEX. The full details
of the language are collected in one place, and the
language is much more logical than the current mix
of TEX and LATEX2ε. LATEX3 is therefore ready for
serious use by (LA)TEX programmers.

At this stage, the document level of LATEX3 is
much less defined. It seems likely that good separa-
tion of programming and document design will be
made available. The new code syntax means that a
number of ideas currently implemented as indepen-
dent packages will need to be re-implemented either
in the new kernel or as supported tools.

My own experience with LATEX3 convinces me
that the kernel team need outsiders to use the code.
The team has done a very good job so far, but ev-
eryone will bring new approaches to using the code.
With the involvement of the wider TEX community,
LATEX3 has the potential to be a major step forward
for LATEX.

� Joseph Wright
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

LATEX3 programming: External perspectives

