
186 TUGboat, Volume 28 (2007), No. 2

Writing ETX format font encoding
specifications

Lars Hellström

Abstract

This paper explains how one writes formal specifi-
cations of font encodings for LATEX and suggests a
ratification procedure for such specifications.

1 Introduction

One of the many difficult problems any creator of
a new typesetting system encounters is that of font
construction — to create fonts that provide all the
information that the typesetting system needs to do
its job. From the early history of TEX, we learn
that this problem is so significant that it motivated
the creation of TEX’s companion and equal META-
FONT, whose implementation proved to be an even
greater scientific challenge than TEX was. It is also
a tell-tale sign that the fonts subtree of the teTEX
distribution is about three times as large as the tex
subtree: fonts are important, and not at all trivial
to generate.

The most respected and celebrated part of font
construction is font design — the creation from prac-
tically nothing of new letter (and symbol) shapes, in
pursuit of an artistic vision — but it is also some-
thing very few people have the time and skill to
carry through. More common is the task of font
installation, where one has to solve the very con-
crete problem of how to set up an existing font so
that it can be used with (LA)TEX. The subprob-
lems in this domain range from the very technical
— how to make different pieces of software “talk” to
each other, for example making information in file
format A available to program B— to the almost
artistic — finding values for glyph metrics and kerns
that will make them look good in text — but these
extremes tend to be clearly defined even if solving
them can be hard, so they are not what will be con-
sidered here. Rather, this paper is about a class of
more subtle problems that have to do with how a
font is organised.

The technical name for such a “font organisa-
tion” is a font encoding. In some contexts, font en-
codings are assumed to be mere mappings from a set
of “slots” to a set of glyph identifiers, but in TEX the
concept entails much more; the various aspects are
detailed in subsequent sections. For the moment, it
is sufficient to observe that the role that a font en-
coding plays in a typesetting system is that of a stan-
dard: it describes what an author can expect from
a font, so that a document or macro package can be

written that works with a large class of fonts rather
than just for one font family. The world of (LA)TEX
would be very different if papers published in jour-
nal X that is printed in commercial font Y could not
use essentially the same sources as the author pre-
pared for typesetting in the free font Z. Fine-tuning
of a document (overfull lines, bad page breaks, etc.)
depends on the exact font used, but it is a great
convenience that one can typeset a well-coded body
of text under a rather wide range of layout param-
eter values (of which the main font family is one)
and still expect the result to look decent, often even
good. Had font encodings not been standardised,
the results might not even have been readable.

When font encodings are viewed as standards,
the historical states of most (LA)TEX font encodings
becomes rather embarrassing, as they lack some-
thing as fundamental as proper specifications! The
typical origin of a font encoding has been that some-
one creates a font that behaves noticeably differently
from other fonts, macro packages are then created
to support this new font, and in time other people
create other fonts that work with the same macros.
At the end of this story the new encoding exists,
but it is not clear who created it, and there is prob-
ably no document that describes all aspects of the
encoding. Later contributors have typically had to
rely on a combination of imitation of previous works,
folklore, and reverse engineering of existing software
when trying to figure out what they need to provide,
but the results are not always verifiable. Further-
more the errors in this area are usually silent — the
classical error being that a ‘$’ was substituted for a
‘£’ (or vice versa) — which means they can only be
discovered through careful proofreading, and then
only if a document even exists which exercises all
aspects of the font encoding. Since font encodings
interact with hyphenation, exhaustive font verifica-
tion through proofreading is probably beyond the
capabilities of any living TEXpert on purely linguis-
tic grounds.

Proper specification of font encodings makes
the task of font installation — and to some extent
also the task of font design, as it too is subject to the
technicalities of font encodings — much simpler, as
there is then a document that authoritatively gives
all details of a font encoding. This paper even goes
one step further, and proposes (i) a standard for-
mat for formal specifications of (LA)TEX font encod-
ings and (ii) a process through which such specifica-
tions can be ratified as the specification of a partic-
ular encoding. My hope is that future (LA)TEX font
encodings will have proper specifications from the
start, as this will greatly simplify making more fonts

TUGboat, Volume 28 (2007), No. 2 187

available in these encodings, and perhaps also make
font designers aware of the subtler points of (LA)TEX
font design, as many details have been poorly doc-
umented.

The proposed file format for encoding specifica-
tions is a development of the fontinst [6] ETX format.
One reason for this choice was that it is an estab-
lished format; many of those who are making fonts
already use it, even if for a slightly different purpose.
Another major reason is that an ETX file is both a
LATEX document and a processable data file; this is
the same kind of bilinguality that has made the .dtx
format so useful. Finally the ETX format makes it
easy to create experimental font installations when a
new encoding is being designed; fontinst can directly
read the file, but the file can also be automatically
converted to a PostScript encoding vector if that ap-
proach seems more convenient. On the other hand,
there are some features — most notably the promi-
nent role of the glyph names — of the ETX format
that would probably had been done differently in a
file format that was built from scratch, but this is
necessary for several of the advantages listed above.

2 Points to keep in mind

2.1 Characters, glyphs, and slots

One fundamental difference that must be under-
stood is that between characters and glyphs. A
character is a semantic entity — it carries some
meaning, even if you usually have to combine sev-
eral characters to make up even one word — whereas
a glyph simply is a piece of graphics. In printed text,
glyphs are used to represent characters and the first
step of reading is to determine which character(s) a
given glyph is representing.1

In the output, TEX neither deals with charac-
ters nor glyphs, really (although many of its mes-
sages speak of characters), but with slots, which es-
sentially are numbered positions in a font. To TEX,
a slot is simply something which can have certain
metric properties (width, height, depth, etc.) but to
the driver which actually does the printing the slot
also specifies a glyph. The same slot in two different
fonts can correspond to two quite different charac-
ters.

For completeness it should also be mentioned
that the input of TEX is a stream of semantic entities
and thus TEX is dealing with characters on that side,
but the input is not the subject of this paper.

1 Some PDF viewers also try to accomplish this, but in
general they need extra information to do it right. The
generic solution provided is to embed a ToUnicode CMap
— which is precisely a map from slots to characters — in the
PDF font object.

2.2 Ligatures

In typography, a ligature is a glyph which has been
formed by joining glyphs that represent two or more
characters; this joining can involve quite a lot of de-
formation of the original shapes. Examples of liga-
tures are the ‘fi’ ligature (from ‘f’ and ‘i’), the ‘Æ’
ligature (from ‘A’ and ‘E’), and the ‘& ’ character
(from ‘E’ and ‘t’), the latter two of which has evolved
to become characters of their own. For those liga-
tures (such as ‘fi’) that have not evolved to charac-
ters, TEX has a mechanism for forming the ligature
out of the characters it is composed from, under the
guidance of ligature/kerning programs found in the
font.

More technically, what happens is that if the
\char (or equivalent) for one slot is immediately
followed by the \char (or equivalent) for another (or
the same) slot and there is a ligaturing instruction in
the LIGKERN table of the current font which applies
to this slot pair then this ligaturing instruction is
executed. This usually replaces the two slots in the
pair with a single new slot specified by the ligaturing
instruction (it could also keep one or both of the
original slots, but that is less common). TEX has
no idea about whether these replacements change
the meaning of anything, but TEX assumes that it
doesn’t, and it is up to the font designer to ensure
that this is the case.

Apart from forming ligatures in text, the liga-
turing mechanism of TEX is traditionally also em-
ployed for another task which is much more prob-
lematic. Ligatures are also used to produce certain
characters which are not part of visible ASCII — the
most common are the endash (typed as --) and the
emdash (typed as ---). This is a problem because
it violates TEX’s assumption that the meaning is
unchanged; the classical problem with this appears
in the OT2 encoding, where the Unicode character
U+0446 (cyrillic small letter tse) could be
typed as ts, whilst the t and s by themselves pro-
duced Unicode characters U+0442 (cyrillic small
letter te) and U+0441 (cyrillic small letter
es) respectively. TEX’s hyphenation mechanism can
however decompose ligatures, so it sometimes hap-
pened that the tse was hyphenated as te-es, which
is quite different from what was intended. Since this
is such an obvious disadvantage, the use of ligatures
for forming non-English letters quickly disappeared
after 8-bit input encodings became available. The
practice still remains in use for punctuation, how-
ever, and the font designer must be aware of this.
For many font encodings there is a set of ligatures
which must be present and replace two or more char-

188 TUGboat, Volume 28 (2007), No. 2

acters by a single, different character. These liga-
tures are called mandatory ligatures in this paper.

The use of mandatory ligatures in new font en-
codings is strongly discouraged, for a number of rea-
sons. The main problem is that they create un-
healthy dependencies between input and output en-
coding, whereas these should ideally be totally in-
dependent. Using ligatures in this way complicates
the internal representation of text, and it also makes
it much harder to typeset text where those ligatures
are not wanted (such as verbatim text). Further-
more it creates problems with kerning, since the “lig-
ature” has not yet been formed when a kern to the
left of it is inserted. Finally, a much better solution
(when it is available) is to use an Omega transla-
tion process (see [9, Sec. 8–11]), since that is in-
dependent of the font, different translations can be
combined, and they can easily handle even “abbrevi-
ations” much more complicated than those ligatures
can deal with.

2.3 Output stages

On its way out of LATEX towards the printed text, a
character passes through a number of stages. The
following five seem to cover what is relevant for the
present discussion:

1. The LATEX Internal Character Representation
(LICR); see [8], Section 7.11, for a full descrip-
tion. At this point the character is a character
token (e.g. a), a text command (e.g. \ss), or a
combination (e.g. \H{o}).

2. Horizontal material ; this is what the character
is en route from TEX’s mouth to its stomach.
For most characters this is equivalent to a sin-
gle \char command (e.g. a is equivalent to
\char 97), but some require more than one,
some are combined using the \accent and
\char commands, some involve rules and/or
kerns, and some are built using boxes that
arbitrarily combine the above elements.

3. DVI commands; these are the DVI file com-
mands that produce the printed representation
of the character.

4. Printed text ; this is the graphical representation
of the character, e.g. as ink on paper or as a
pattern on a computer screen. Here the text
consists of glyphs.

5. Interpreted text ; this is essentially printed text
modulo equivalence of interpretation, hence the
text doesn’t really reach this stage until some-
one reads it. Here the text consists of charac-
ters.

In theory there is a universal mapping from
LICR to interpreted text, but various technical re-
strictions make it impossible to simultaneously sup-
port the entire mapping. A LATEX encoding selects
a restriction of this mapping to a limited set which
will be “well supported” (meaning that kerning and
such between characters in the set works), whereas
elements outside this set at best can be supported
through temporary encoding changes. The encod-
ing also specifies a decomposition of the mapping
into one part which maps LICR to horizontal ma-
terial and one part which maps horizontal material
to interpreted text. The first part is realized by
the text command definitions usually found in the
‘〈enc〉enc.def’ file for the encoding. The second
part is the font encoding, the specification of which
is the topic of this paper. It is also worth notic-
ing that an actual font is a mapping of horizontal
material to printed text.

An alternative decomposition of the mapping
from LICR to interpreted text would be at the DVI

command level, but even though this decomposition
is realized in most TEX implementations, it has very
little relevance for the discussion of encodings. The
main reason for this is that it depends not only on
the encoding of a font, but also on its metrics. Fur-
thermore it is worth noticing that in e.g. pdfTEX
there need not be a DVI command level.

2.4 Hyphenation

There are strong connections between font encoding
and hyphenation because TEX’s hyphenation mech-
anism operates on horizontal material; more pre-
cisely, the hyphenation mechanism only works on
pieces of horizontal material that are equivalent to
sequences of \char commands. This implies that
hyphenation patterns, as selected via the \language
parameter, are not only for a specific language, they
are also for a specific font encoding.

The hyphenation mechanism uses the \lccode
values to distinguish between three types of slots:

1. lower case letters (\lccoden = n),

2. upper case letters (\lccoden /∈ {0, n}), and

3. non-letters (\lccoden = 0).

Only the first two types can be part of a hy-
phenatable word and only lower case letters are
needed in the hyphenation patters. This does how-
ever place severe restrictions on how letters can be
placed in a text font because TEX uses the same
\lccode values for all text in a paragraph and
therefore these values cannot be changed whenever
the encoding changes. In LATEX the \lccode table
is not allowed to change at all and consequently all

TUGboat, Volume 28 (2007), No. 2 189

text font encodings must work using the standard
set of \lccode values.

In ε-TEX each set of hyphenation patterns has
its own set of \lccode values for hyphenation, so
the problem isn’t as severe there. The hyphenation
mechanism of Omega should become completely in-
dependent of the font encoding, although the last
time I checked it was still operating on material en-
coded according to a font encoding.

2.5 Production and specification ETX files

Finally, it is worth pointing out the difference be-
tween an ETX file created for the specification of a
font encoding and one created to be used in actu-
ally producing fonts with this encoding. They are
usually not the same. Although specification ETXs
certainly may be of direct use in the production
of fonts — especially experimental fonts produced as
part of the work on a new encoding — they are usu-
ally not ideal for the purpose. In particular there
is often a need to switch between alternative names
for a glyph to accommodate what is actually in the
fonts, but such trickeries are undesirable complica-
tions in a specification. On the other hand a produc-
tion ETX file has little need for verbose comments,
whereas they are rather an advantage in a specifica-
tion ETX file.

Therefore one shouldn’t be surprised if there are
two ETX files for a specific encoding: one which is a
specification version and one which is a production
version. If both might need to be in the same direc-
tory then one should, as a rule of thumb, include a
‘spec’ in the name of the specification version.

3 Font encoding specifications

3.1 Basic principles

Most features of the font encoding are categorized as
either mandatory or ordinary. The mandatory fea-
tures are what macros may rely on, whereas the ordi-
nary simply are something which fonts with this en-
coding normally provide. Font designers may choose
to provide other features than the ordinary, but are
recommended to provide the ordinary features to the
extent that available resources permit.

Many internal references in the specification are
in the form of glyph names and the choice of these
is a slightly tricky matter. From the point of formal
specification, the choices can be completely arbi-
trary, but from the point of practical usefulness they
most likely are not. One of the main advantages
of the ETX format for specifications is that such
specifications can also be used to make experimen-
tal implementations, but this requires that the glyph

names in the specification are the same as those used
in the fonts from which the experimental implemen-
tation should be built. Yet another aspect is that
the glyph names are best chosen to be the ones one
can expect to find in actual fonts, as that will make
things easier for other people that want to make non-
experimental implementations later. For this last
purpose, a good reference is Adobe’s technical note
on Unicode and glyph names [3]. For most common
glyphs, [3] ends up recommending that one should
follow the Adobe glyph list [2], which however has
the peculiar trait of recommending names on the
form afiiddddd (rather than the Unicode-based al-
ternative unixxxx) for most non-latin glyphs. This
is somewhat put in perspective by [1].

3.2 Slot assignments

The purpose of the slot assignments is to specify
for each slot the character or characters to which
it is mapped. That one slot is mapped to many
characters is an unfortunate, but not uncommon,
reality in many encodings, as limitations in font size
have often encouraged identifications of two charac-
ters which are almost the same. It should be avoided
in new encodings.

Slot assignments are done using the \nextslot
command and a \setslot . . . \endsetslot con-
struction as follows:

\nextslot{〈slot number〉}
\setslot{〈glyph name〉}
〈slot commands〉

\endsetslot

A typical example of this is
\nextslot{65}
\setslot{A}
\Unicode{0041}{LATIN CAPITAL LETTER A}

\endsetslot

which gets typeset as
Slot 65 ‘A’
Unicode character U+0041, latin capital
letter a.
The \nextslot command does not typeset any-

thing; it simply stores the slot number in a counter,
for later use by \setslot. The \endsetslot com-
mand increments this counter by one. Hence
the \nextslot command is unnecessary between
\setslots for consecutive slots. Besides \nextslot,
there is also a command \skipslots which in-
crements the slot number counter by a specified
amount. The argument of both \nextslot and
\skipslots can be arbitrary fontinst integer ex-
pressions (see [5]). All TEX 〈number〉s that survive
full expansion are valid fontinst integer expressions,

190 TUGboat, Volume 28 (2007), No. 2

but for example ‘\~ is not, as \~ is a macro which
will break before the expression is typeset. These
cases can however be fixed by preceding the TEX
〈number〉 by \number, as \number‘\~ survives full
expansion by expanding to 126.

The main duty of the 〈slot commands〉 is to
specify the target character (or characters) for this
slot. The simplest way of doing this is to use the
\Unicode command, which has the syntax

\Unicode{〈code point〉}{〈name〉}
The 〈code point〉 is the number of the character (in
hexadecimal notation, usually a four-digit number)
and the 〈name〉 is the name. Case is insignificant in
these arguments. If a slot corresponds to a string of
characters rather than to a single character, then one
uses the \charseq command, which has the syntax

\charseq{〈\Unicode commands〉}
e.g.

\nextslot{30}
\setslot{ffi}
\charseq{
\Unicode{0066}{LATIN SMALL LETTER F}
\Unicode{0066}{LATIN SMALL LETTER F}
\Unicode{0069}{LATIN SMALL LETTER I}

}
\endsetslot

Several \Unicode commands not in the argument
of a \charseq instead mean that each of the listed
characters is a valid interpretation of the slot.

If a character cannot be specified in terms of
Unicode code points then the specification should
simply be a description in text which identifies the
character. Such descriptions are written using the
\comment command

\comment{〈text〉}
It is worth noticing that the 〈text〉 is technically
only an argument of \comment when the program
processing the ETX file is ignoring \comment com-
mands. This means \verb and similar catcode-
changing commands can be used in the 〈text〉. The
\par command, on the other hand, is not allowed
in the 〈text〉.

The \comment command should also be used
for any further piece of explanation of or commen-
tary to the character used for the slot, if the exposi-
tion seems to need it. There can be any number of
\comment commands in the 〈slot commands〉.

3.3 Ligatures

There are three classes of ligatures in the font encod-
ing specifications: mandatory, ordinary, and odd.
Mandatory ligatures must be present in any font

which complies with the encoding, whereas ordinary
and odd ligatures need not be. No clear distinction
can be made between ordinary and odd ligatures,
but a non-mandatory ligature should be categorized
as ordinary if it makes sense for the majority of
users, and as odd otherwise. Hence the ‘fi’ ligature
is categorized as ordinary in the T1 encoding (al-
though it makes no sense in Turkish), whereas the
‘ij’ ligature is odd.

In the ETX format, a ligature is specified using
one of the slot commands

\Ligature{〈ligtype〉}{〈right〉}{〈new〉}
\ligature{〈ligtype〉}{〈right〉}{〈new〉}
\oddligature{〈note〉}{〈ligtype〉}

{〈right〉}{〈new〉}

The \Ligature command is used for mandatory
ligatures, \ligature for ordinary ligatures, and
\oddligature for odd ligatures. The 〈right〉 and
〈new〉 arguments are names of the glyphs being
assigned to the slots involved in this ligature. The
〈right〉 specifies the right part in the slot pair being
affected by the ligature, whereas the left part is the
one of the \setslot . . . \endsetslot construction
in which the ligaturing command is placed. The
〈new〉 specifies a new slot which will be inserted by
the ligaturing instruction. The 〈ligtype〉 is the ac-
tual ligaturing instruction that will be used; it must
be LIG, /LIG, /LIG>, LIG/, LIG/>, /LIG/, /LIG/>,
or /LIG/>>. The slashes specify retention of the
left or right original character; the > signs specify
passing over that many slots in the result without
further ligature processing. 〈note〉, finally, is a piece
of text which explains when the odd ligature may
be appropriate. It is typeset as a footnote.

As an example of ligatures we find the following
in the specification of the T1 encoding:

\nextslot{33}
\setslot{exclam}
\Unicode{0021}{EXCLAMATION MARK}
\Ligature{LIG}{quoteleft}{exclamdown}

\endsetslot

It is typeset as

Slot 33 ‘exclam’
Unicode character U+0021, exclamation
mark.
Mandatory ligature exclam∗quoteleft→
exclamdown

With other 〈ligtype〉s there may be more names
listed on the right hand side and possibly a ‘b’
symbol showing the position at which ligature pro-
cessing will start afterwards.

TUGboat, Volume 28 (2007), No. 2 191

3.4 Math font specialities

There are numerous technicalities which are special
to math fonts, but only a few of them are exhibited
in ETX files.2 Most of these have to do with the TEX
mechanisms that find sufficiently large characters for
commands like \left, \sqrt, and \widetilde.

The first mechanism for this is that a character
in a font can sort of say “If I’m too small, then try
character . . . instead”. This is expressed in an ETX

file using the \nextlarger command, which has the
syntax

\nextlarger{〈glyph name〉}
The second mechanism constructs a sufficiently
large character from smaller pieces; this is known
as a ‘varchar’ or ‘extensible character’. This is ex-
pressed in an ETX file using an “extensible recipe”,
the syntax for which is

\varchar 〈varchar commands〉 \endvarchar
where each 〈varchar command〉 is one of

\varrep{〈glyph name〉}
\vartop{〈glyph name〉}
\varmid{〈glyph name〉}
\varbot{〈glyph name〉}

There can be at most one of each and their order
is irrelevant. The most important is the \varrep
command, as that is the part which is repeated un-
til the character is sufficiently large. The \vartop,
\varmid, and \varbot commands are used to spec-
ify some other part which should be put at the top,
middle, and bottom of the extensible character re-
spectively. Not all extensible recipes use all of these,
however.

As an example, here is how a very large left
brace is constructed:

For \vartop{bracelefttp} For \varrep{braceex}
For \varmid{braceleftmid} Again for \varrep{braceex}
For \varbot{braceleftbt}

Both \nextlarger and \varchar commands
are like \ligature in that they describe ordinary
features for the encoding; they appear in a speci-
fication ETX file mainly to explain the purpose of
some ordinary character. There is no such thing as
a mandatory \nextlarger or \varchar, but var-
chars are occasionally used to a similar effect. In
these cases, the character generated by the exten-
sible recipe is something quite different from what
a \char for that slot would produce. Thus for the

2 For an overview of the subject, see for example
Vieth [10].

slot to produce the expected result it must be ref-
erenced using a \delimiter or \radical primitive,
since those are the only ones which make use of the
extensible recipe. The effect is that the slot has a
semimandatory assignment; the result of \char is
unspecified (as for a slot with an ordinary assign-
ment), but the result for a large delimiter or radical
is not (as for a slot with a mandatory assignment).

Thus some math fonts have an extra section
“Semimandatory characters” between the manda-
tory and ordinary character sections. In that section
for the OMX encoding we find for example

\nextslot{60}
\setslot{braceleftmid}
\Unicode{2016}{DOUBLE VERTICAL LINE}
\comment{This is the large size of the

|\Arrowvert| delimiter, a glyphic
variation on |\Vert|. The
\texttt{braceleftmid} glyph
ordinarily placed in this slot must
not be too tall, or else the
extensible recipe actually
producing the character might
sometimes not be used.}

\varchar
\varrep{arrowvertex}

\endvarchar
\endsetslot

which is typeset as

Slot 60 ‘braceleftmid’
Unicode character U+2016, double verti-
cal line.
This is the large size of the \Arrowvert de-
limiter, a glyphic variation on \Vert. The
braceleftmid glyph ordinarily placed in this
slot must not be too tall, or else the exten-
sible recipe actually producing the character
might sometimes not be used.
Extensible glyph:
Repeated arrowvertex

3.5 Fontdimens

Each TEX font contains a list of fontdimens, num-
bered from 1 and up, which are accessible via the
\fontdimen TEX primitive. Quite a few are also
used implicitly by TEX and therefore cannot be left
out even if they are totally irrelevant, but as one can
always include some extra fontdimens in a font —
the only bounds on how many fontdimens there may
be are the general bound on the size of a TFM file
and the amount of font memory TEX has available —
this is usually not a problem.

192 TUGboat, Volume 28 (2007), No. 2

The reason fontdimens are part of font en-
coding specifications is that the meaning of e.g.
\fontdimen 8 varies between different fonts de-
pending on their encoding; thus the encoding spec-
ification must define the quantity stored in each
\fontdimen parameter. This is done using the
\setfontdimen command, which has the syntax

\setfontdimen{〈number〉}{〈name〉}
The 〈number〉 is the fontdimen number (as a se-
quence of decimal digits where the first digit isn’t
zero) and the 〈name〉 is a symbolic name for the
quantity.

The standard list of symbolic names for font-
dimen quantities appears below; the listed quanti-
ties should always be described using the names in
this list. Encoding specifications that employ other
quantities as fontdimens should include definitions
of these quantities. Those quantities that are de-
fined as “Formula parameter . . . ” have to do with
how mathematical formulae are rendered and are be-
yond our scope here. For exact definitions of these
parameters, the reader is referred to Appendix G of
The TEXbook [7].
acccapheight The height of accented full capitals.
ascender The height of lower case letters with as-

cenders.
axisheight Formula parameter σ22.
baselineskip The font designer’s recommendation

for natural length of the TEX parameter
\baselineskip.

bigopspacing1 Formula parameter ξ9.
bigopspacing2 Formula parameter ξ10.
bigopspacing3 Formula parameter ξ11.
bigopspacing4 Formula parameter ξ12.
bigopspacing5 Formula parameter ξ13.
capheight The height of full capitals.
defaultrulethickness Formula parameter ξ8.
delim1 Formula parameter σ20.
delim2 Formula parameter σ21.
denom1 Formula parameter σ11.
denom2 Formula parameter σ12.
descender The depth of lower case letters with de-

scenders.
digitwidth The median width of the digits in the

font.
extraspace The natural width of extra interword

glue at the end of a sentence. TEX implicitly
uses this parameter if \spacefactor is 2000 or
more and \xspaceskip is zero.

interword The natural width of interword glue
(spaces). TEX implicitly uses this parameter
unless \spaceskip is nonzero.

italicslant The slant per point of the font. Unlike
all other fontdimens, it is not proportional to
the font size.

maxdepth The maximal depth over all slots in the
font.

maxheight The maximal height over all slots in the
font.

num1 Formula parameter σ8.
num2 Formula parameter σ9.
num3 Formula parameter σ10.
quad The quad width of the font, normally approx-

imately equal to the font size and/or the width
of an ‘M’. Also implicitly available as the length
unit em and used for determining the size of the
length unit mu.

shrinkword The (finite) shrink component of inter-
word glue (spaces). TEX implicitly uses this
parameter unless \spaceskip is nonzero.

stretchword The (finite) stretch component of inter-
word glue (spaces). TEX implicitly uses this
parameter unless \spaceskip is nonzero.

sub1 Formula parameter σ16.
sub2 Formula parameter σ17.
subdrop Formula parameter σ19.
sup1 Formula parameter σ13.
sup2 Formula parameter σ14.
sup3 Formula parameter σ15.
supdrop Formula parameter σ18.
verticalstem The dominant width of vertical stems.

This quantity is meant to be used as a measure
of how “dark” the font is.

xheight The x-height (height of lower case letters
without ascenders). Also implicitly available as
the length unit ex.

3.6 The codingscheme

The final encoding-dependent piece of information
in a TEX font is the codingscheme, which is essen-
tially a string declaring what encoding the font has.
This information is currently only used by programs
that convert the information in a TEX font to some
other format and these use it to identify the glyphs
in the font. Therefore this string should be cho-
sen so that the contents of the slots in the font can
be positively identified. Observe that the encoding
specification by itself does not provide enough infor-
mation for this, since there are usually a couple of
slots that do not contain mandatory characters. On
the other hand, it is not a problem in this context
if the font leaves some of the slots (even mandatory
ones) empty as that is anyway easily detected. The
only problem is with fonts where the slots are as-

TUGboat, Volume 28 (2007), No. 2 193

signed to other characters than the ones specified in
the encoding.

For that reason, it is appropriate to assign two
codingscheme strings to each encoding. The main
codingscheme is for fonts where all slots (manda-
tory and ordinary alike) have been assigned accord-
ing to the specification or have been left empty.
The variant codingscheme is for fonts where some
ordinary slots have been assigned other characters
than the ones listed in the specification, but where
the mandatory slots are still assigned according to
the specification or are left empty. The font encod-
ing specification should give the main codingscheme
name, whereas the variant codingscheme name could
be formed by adding VARIANT to the main cod-
ingscheme name.

Technically the codingscheme is specified by
setting the codingscheme string variable. This has
the syntax

\setstr{codingscheme}
{〈codingscheme name〉}

e.g.

\setstr{codingscheme}
{EXTENDED TEX FONT ENCODING - LATIN}

which is typeset as (line break is editorial)

Default s(codingscheme) = EXTENDED TEX
 FONT ENCODING - LATIN

A codingscheme name may be at most 40 charac-
ters long and may not contain parentheses. If the
entire VARIANT cannot be suffixed to a main name
because the result becomes too long (as in the above
example) then use the first 40 characters of the re-
sult.

3.7 Overall document structure

The overall structure of a font encoding specification
should be roughly the following

\relax
\documentclass[twocolumn]{article}
\usepackage[specification]{fontdoc}
〈preamble〉
\begin{document}
〈title〉
〈manifest〉
\encoding
〈body〉
\endencoding
〈discussion〉
〈change history〉
〈bibliography〉
\end{document}

The commands described in the preceding subsec-
tions must all go in the 〈body〉 part of the document,
as that is the only part of the file which actually gets
processed as a data file. The part before \encoding
is skipped and the part after \endencoding is never
even input, so whatever appears there is only part of
the LATEX document. For the purposes of processing
as a data file, the important markers in the file are
the \relax, the \encoding, and the \endencoding
commands.

The 〈title〉 is the usual \maketitle (and the
like) stuff. The person or persons who appear as
author(s) are elsewhere in this paper described as
the encoding proposers. The 〈title〉 should also give
the date when the specification was last changed.

The 〈manifest〉 is an important, although usu-
ally pretty short, part of the specification. It is a
piece of text which explains the purpose of the en-
coding (in particular what it can be used for) and
the basic ideas (if any) which have been used in its
construction. It is often best marked up as an ab-
stract.

The 〈discussion〉 is the place for any longer
comments on the encoding, such as analyses of dif-
ferent implementations, comparisons with other en-
codings, etc. This is also the place to explain any
more general structures in the encoding, such as
the arrow kit in the proposed MS2 encoding [4]. In
cases where the specification is mainly a formula-
tion of what is already an established standard the
〈discussion〉 is often rather short as the relevant dis-
cussion has already been published elsewhere, but
it is anyway a service to the reader to include this
information. References to the original documents
should always be given.

It might be convenient to include an FAQ sec-
tion at the end of the discussion. This is particularly
suited for explaining things where one has to look
for a while and consult the references to find the
relevant information.

The 〈change history〉 documents how the spec-
ification has changed over time. It is preferably de-
tailed, as each detail in an encoding is important,
but one should not be surprised if it is nevertheless
rather short due to there not having been that many
changes.

The 〈bibliography〉 is an important part of the
specification. It should at the very least include all
the sources which have been used in compiling the
encoding specification, regardless of whether they
are printed, available on the net, merely “personal
communication”, or something else. It is also a ser-
vice to the reader to include in the bibliography
some more general references for related matters.

194 TUGboat, Volume 28 (2007), No. 2

The 〈preamble〉 is just a normal LATEX pream-
ble and there are no restrictions on defining new
commands in it, although use of such commands in
the 〈body〉 part is subject to the same restrictions as
use of any general LATEX command. The preamble
should however not load any packages not part of
the required suite of LATEX packages, as that may
prevent users who do not have these packages from
typesetting the specification. Likewise, the specifi-
cation should not require that some special font is
available. Glyph examples for characters are usually
better referenced via Unicode character charts than
via special fonts.

An exception to this rule about packages is that
the specification must load the fontdoc package, as
shown in the outline above, since that defines the
\setslot etc. commands that should appear in the
〈body〉. This should not cause any problems, as the
fontdoc package can preferably be kept in the same
directory as the collection of encoding specifications
(see below). The specification option should be
passed to the package to let it know that the file
being processed is an encoding specification — oth-
erwise \Ligature and \ligature will get the same
formatting, for one. It is not actually necessary to
use the article document class, and neither must it
be passed the twocolumn option, but it is custom-
ary to do so. In principle any other document class
defined in required LATEX will do just as well.

If you absolutely think that using some non-
required package significantly improves the specifi-
cation, then try writing the code so that it loads the
package only if it is available and provide some kind
of fallback definition for sites where it is not. E.g.
the url package could be loaded as

\IfFileExists{url.sty}{\usepackage{url}}{}
\providecommand\url{\verb}

The \url command defined by this is not equivalent
to the command defined by the url package, but it
can serve fairly well (with a couple of extra overfull
lines as the only ill effect) if its use is somewhat
restricted.

Finally, a technical restriction on the 〈preamble〉,
〈title〉, and 〈manifest〉 is that they must not contain
any mismatched \ifs (of any type) or \fis, as TEX
conditionals will be used for skipping those parts of
the file when it is processed as a data file. If the
definition of some macro includes mismatched \ifs
or \fis (this will probably occur only rarely) then
include some extra code so that they do match.

3.8 Encoding specification body syntax

The 〈body〉 part of an encoding specification must

adhere to a much stricter syntax than the rest of
the file. The 〈body〉 is a sequence of 〈encoding
command〉s, each of which should be one of the
following:

\setslot{〈glyph name〉} 〈slot commands〉
\endsetslot
\nextslot{〈number〉}
\skipslots{〈number〉}
\setfontdimen{〈number〉}{〈name〉}
\setstr{codingscheme}

{〈codingscheme name〉}
\needsfontinstversion{〈version number〉}

The \needsfontinstversion command is usually
placed immediately after the \encoding command.
The 〈version number〉 must be at least 1.918 for
many of the features described in this file to be avail-
able, and at least 1.928 if the \charseq command
is used.

The 〈slot commands〉 are likewise a sequence of
〈slot command〉s, each of which should be one of the
following:

\Unicode{〈code point〉}{〈name〉}
\charseq{〈\Unicode commands〉}
\comment{〈text〉}
\Ligature{〈ligtype〉}{〈right〉}{〈new〉}
\ligature{〈ligtype〉}{〈right〉}{〈new〉}
\oddligature{〈note〉}{〈ligtype〉}

{〈right〉}{〈new〉}
\nextlarger{〈glyph name〉}
\varchar 〈varchar commands〉 \endvarchar

where 〈varchar commands〉 is similarly a sequence of
〈varchar command〉s, each of which should be one
of the following:

\varrep{〈glyph name〉}
\vartop{〈glyph name〉}
\varmid{〈glyph name〉}
\varbot{〈glyph name〉}

Finally, one can include any number of 〈comment
command〉s between any two encoding, slot, or var-
char commands. The comment commands are

\begincomment 〈LATEX text〉 \endcomment
\label{〈reference label〉}

The 〈LATEX text〉 can be pretty much any LATEX code
that can appear in conditional text. (\begincomment
is either \iffalse or \iftrue depending on whether
the encoding specification is processed as a data
file or typeset as a LATEX document respectively.
\endcomment is always \fi.) The \label command
is just the normal LATEX \label command; when
it is used in a 〈slot commands〉 string it references
that particular slot (by number and glyph name).

TUGboat, Volume 28 (2007), No. 2 195

The full syntax of the ETX format can be found
in the fontinst manual [5], but font encoding speci-
fications only need a subset of that.

3.9 Additional fontdoc features

The \textunicode command is an “in comment
paragraph” form of \Unicode. Both commands
have the same syntax, but \textunicode is only
allowed in “comment” contexts. A typical use of
\textunicode is

\comment{An . . .
. . . this is
\textunicode{2012}{FIGURE DASH}; in . . .
}

which is typeset as
An . . . this is U+2012 (figure dash); in . . .
The fontdoc package inputs a configuration file

fontdoc.cfg if that exists. This can be used to pass
additional options to the package. The only cur-
rently available options that may be of interest are
the hypertex and pdftex options, which hyperlinks
each U+. . . generated by \Unicode or \textunicode
(using HyperTEX or pdfTEX conventions3 respec-
tively) to a corresponding glyph image on the Uni-
code consortium website. To use this feature one
should put the line

\ExecuteOptions{hypertex}

or
\ExecuteOptions{pdftex}

in the fontdoc.cfg file. Please do not include this
option in the \usepackage{fontdoc} of an encod-
ing specification file as that can be a severe annoy-
ance for people whose TEX program or DVI viewers
do not support the necessary extensions.

4 Font encoding ratification

This section describes a suggested ratification pro-
cess for font encoding specifications. As there are
fewer technical matters that impose restrictions on
what it may look like, it is probably more subjective
than the other parts of this paper.

A specification in the process of being ratified
can be in one of three different stages: draft, beta,
or final. Initially the specification is in the draft
stage, during which it will be scrutinized and can
be subject to major changes. A specification which
is in the beta stage has received a formal approval
but the encoding in question may still be subject to

3 One could just as well do the same thing using some
other convention if a suitable definition of \FD@codepoint is
included in fontdoc.cfg. See the fontinst sources [6] for more
details.

some minor changes if weighty arguments present
themselves. Once the specification has reached the
final stage, the encoding may not change at all.

4.1 Getting to the draft stage

The process of taking an encoding to the draft stage
can be summarized in the following steps. Being
in the draft stage doesn’t really say anything about
whether the encoding is in any way correct or useful,
except that some people (the encoding proposers)
believe it is and are willing to spend some time on
ratifying it.

Write an encoding specification The first step
is to write a specification for the font encoding in
question. This document must not only technically
describe the encoding but also explain what the en-
coding is for and why it was created. See Subsec-
tion 3.7 for details on how the document is prefer-
ably organised.

Request an encoding name The second step is
to write to the LATEX3 project and request a LATEX
encoding name for the encoding. This mail should
be in the form of a LATEX bug report, it must be sent
to

latex-bugs@latex-project.org,

and it must include the encoding specification file.
Suggestions for an encoding name are appreciated,
but not necessarily accepted. The purpose of this
mail is not to get an approval of the encoding, but
only to have a reasonable name assigned to it.

Upload the specification to CTAN The third
step is make the encoding specification publicly
available by uploading it to CTAN. Encoding speci-
fications are collected in the

info/encodings

directory (which should also contain the most recent
version of this paper). The name of the uploaded file
should be ‘〈encoding name〉draft.etx’. The reason
for this naming is that it must be clear that the
specification has not yet been ratified.

Announce the encoding When the upload has
been confirmed, it is time to announce the encod-
ing by posting a message about it to the relevant
forums. Most important is the tex-fonts mail-
ing list, since that is where new encodings should
be debated. Messages should also be posted to the
comp.text.tex newsgroup and any forums related
to the intended use of the encoding: an encoding
for Sanskrit should be announced on Indian TEX

196 TUGboat, Volume 28 (2007), No. 2

users forums, an encoding for printing chess posi-
tions should be announced on some chess-with-TEX
user forum, etc., to the extent that such forums ex-
ist.

The full address of the tex-fonts mailing list
is

tex-fonts@math.utah.edu

This list rejects postings from non-members, so you
need to subscribe to it before you can post your
announcement. This is done by sending a ‘subscribe
me’ mail to

tex-fonts-request@math.utah.edu

The list archives can be found at

http://www.math.utah.edu/mailman/
listinfo/tex-fonts

A tip is to read through the messages from a cou-
ple of months before you write up your announce-
ment, as that should help you get acquainted with
the normal style on the list. Please do not send mes-
sages encoded in markup languages (notably, HTML,
XML, and word processor formats) to the list.

Experimental encodings There is a point in go-
ing through the above procedure even for experi-
mental encodings, i.e., encodings whose names start
with an E. Of course there is no point in ratify-
ing a specification of an experimental encoding, as
it is very likely to frequently change, but having a
proper name assigned to the encoding and upload-
ing its specification to CTAN makes it much simpler
for other people to learn about and make references
to the encoding.

4.2 From draft to beta stage

The main difference between a draft and beta stage
specification respectively is that beta stage specifi-
cations have been scrutinized by other people and
found to be free of errors. The practical implemen-
tation of this is that a debate is held (in the normal
anarchical manner of mailing list debates) on the
tex-fonts mailing list. In particular the following
aspects of the specification should be checked:

1. Is the encoding technically correct? There are
many factors which affect what TEX does and it
is easy to overlook some. (The \lccodes seem
to be particularly troublesome in this respect.)
Sometimes fonts simply cannot work as an en-
coding specifies they should and it is important
that such defects in the encoding are discovered
on an early stage.

2. Are there any errors in the specification? A
font encoding specification is largely a table and

typos are easy to make. Proofreading may be
boring, but it is very, very important.

3. Is the specification sufficiently precise? Are
there any omissions, ambiguities, inaccuracies,
or completely irrelevant material in the specifi-
cation? There shouldn’t be.

During the debate, the encoding proposers should
hear what other people have to say about the en-
coding draft, revise it accordingly when some flaw
is pointed out, and upload the revised version. This
cycle may well have to be repeated several times be-
fore everyone is content. It is worth pointing out
that in practice the debate should turn out to be
more of a collective authoring of the specification
than a defense of its validity. There is no point in
going into it expecting the worst.

Unfortunately, it might happen that there never
is a complete agreement on an encoding specifica-
tion — depending on what side one takes, either the
encoding proposers refuse to correct obvious flaws
in it, or someone on the list insists that there is a
flaw although there is obviously not — but hopefully
that will never happen. If it anyway does happen
then the person objecting should send a mail whose
subject contains the phrase “formal protest against
XXX encoding” (with XXX replaced by whatever the
encoding is called) to the list. Then it will be up to
the powers that be to decide on the fate of the en-
coding (see below).

Summarize the debate When the debate on
the encoding is over — e.g. a month after anyone
last posted anything new on the subject — then the
encoding proposers should summarize the debate
on the encoding specification draft and post this
summary as a follow-up on the original mail to
latex-bugs. This summary should list the changes
that have been made to the encoding, what sug-
gestions there were for changes which have not
been included, and whether there were any formal
protests against the encoding. The summary should
also explain what the proposers want to have done
with the encoding. In the usual case this is having
it advanced to beta stage, but the proposers might
alternatively at this point have reached the conclu-
sion that the encoding wasn’t such a good idea to
start with and therefore withdraw it, possibly to
come again later with a different proposal.

In response to this summary, the LATEX-project
people may do one of three things:

• If the proposers want the encoding specifica-
tion advanced and there are no formal protests

TUGboat, Volume 28 (2007), No. 2 197

against this, then the encoding should be ad-
vanced to the beta stage. The LATEX-project
people do this by adding the encoding to the
list of approved (beta or final stage) encodings
that they [presumably] maintain.
• If the proposers want to withdraw the encod-

ing specification then the name assigned to it
should once again be made available for use for
other encodings.
• If the proposers want the encoding specifica-

tion advanced but there is some formal protest
against this, then the entire matter should be
handed over to some suitable authority, as a
suggestion some technical TUG committee, for
resolution.

Update the specification on CTAN When the
specification has reached the beta stage, its file on
CTAN should be updated to say so. In particular
the file name should be changed from ‘〈encoding
name〉draft.etx’ to ‘〈encoding name〉spec.etx’.

Modifying beta stage encodings If a beta
stage encoding is modified then the revised speci-
fication should go through the above procedure of
ratification again before it can replace the previ-
ous ‘〈encoding name〉spec.etx’ file on CTAN. The
revised version should thus initially be uploaded
as 〈encoding name〉draft.etx, reannounced, and
redebated. It can however be expected that such
debates will not be as extensive as the original
debates.

4.3 From beta stage to final stage

The requirements for going from beta stage to final
stage are more about showing that the encoding has
reached a certain maturity than about demonstrat-
ing technical merits. The main difference in use-
fulness between a beta stage encoding and a final
stage encoding is that the latter can be considered
safe for archival purposes, whereas one should have
certain reservations against such use of beta stage
encodings.

It seems reasonable that the following condi-
tions should have to be fulfilled before a beta stage
encoding can be made a final stage encoding:

• At least one year must have passed since the
last change was made to the specification.
• At least two people other than the proposer

must have succeeded in implementing the en-
coding in a font.

It is quite possible that some condition should be
added or some of the above conditions reformulated.

References

[1] Adobe Systems Incorporated: Adobe
Standard Cyrillic Font Specification, Adobe
Technical Note #5013, 1998; http://
www.adobe.com/devnet/font/pdfs/
5013.Cyrillic_Font_Spec.pdf.

[2] Adobe Systems Incorporated: Adobe Glyph
List, text file, 2002, http://www.adobe.com/
devnet/opentype/archives/glyphlist.txt.

[3] Adobe Systems Incorporated: Adobe Solutions
Network: Unicode and Glyph Names, web
page, 2007, http://www.adobe.com/devnet/
opentype/archives/unicodegn.html.

[4] Matthias Clasen and Ulrik Vieth: Towards
a New Math Font Encoding for (LA)TEX,
March 1998, presented at EuroTEX’98;
http://tug.org/twg/mfg/papers/current/
mfg-euro-all.ps.gz.

[5] Alan Jeffrey, Rowland McDonnell, Ulrik
Vieth, and Lars Hellström: fontinst — font
installation software for TEX (manual), 2004,
ctan: fonts/utilities/fontinst/doc/
manual/fontinst.pdf.

[6] Alan Jeffrey, Sebastian Rahtz, Ulrik
Vieth, and Lars Hellström: The fontinst
utility, documented source code, v 1.9xx,
ctan: fonts/utilities/fontinst/source/.

[7] Donald E. Knuth, Duane Bibby
(illustrations): The TEXbook, Addison-Wesley,
1991; ISBN 0-201-13447-0, volume A of
Computers and Typesetting.

[8] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
and Chris Rowley: The LATEX Companion
(second edition), Addison–Wesley, 2004;
ISBN 0-201-36299-6.

[9] John Plaice and Yannis Haralambous:
Draft documentation for the Omega
system, version 1.12, 1999; http://
omega.enstb.org/roadmap/doc-1.12.ps.

[10] Ulrik Vieth: Math typesetting in TEX:
The good, the bad, the ugly, in the proceedings
of EuroTEX 2001; http://www.ntg.nl/maps/
pdf/26_27.pdf.

� Lars Hellström
LATEX3 project

