
TUGboat, Volume 23 (2002), No. 3/4 309

Graphics

Eukleides: A geometry drawing language

Christian Obrecht

As a mathematics teacher in a French high school,
I have to compose a rather large number of doc-
uments for my students, containing both text and
formulas. In my point of view, LATEX is the best

Editor’s note: This article is a reiteration of the article by

the same title in TUGboat 22:4, pp. 334-337. Unfortunately,

owing to an editorial glitch, the figures in that version were

not properly displayed. We regret the mixup.

tool in such a situation, combining efficiency and
high quality. Very often, these documents should be
illustrated with geometric figures. I first used the
excellent PSTricks package to draw them. I didn’t
want to use WYSIWYG software instead, because I
wanted to keep following LATEX’s philosophy, that is:
What You Mean Is What You Get. Unfortunately,
PSTricks isn’t designed for geometry at all and is
rather inappropriate in many situations.

One night, I wanted to draw a triangle with
an inscribed circle, so I had to compute by hand
the coordinates of the center and the radius of this
circle, which is quite boring. During these calcula-
tions, I realized that they could easily be done by a
computer, and that gave me the idea to create Eu-
kleides, a geometry drawing language. My goal was
to make it as close as possible to what mathemat-
ics teachers would say to describe geometric figures.
For instance, the former problem, written as an ex-
ercise, could be:

Let ABC be a triangle and I its inscribed
circle. Draw ABC and I.

In Eukleides, it gives:

A B C triangle

I = incircle(A,B,C)

draw(A,B,C) ; draw(I)

Which leads to the following graphical result:

Once the design of the language was done, I
wrote eukleides,1 a compiler which translates Eu-
kleides code into PSTricks macros. This program
can run as a filter. That is, it can take a LATEX
source containing Eukleides code, and replace this
code with PSTricks macros, producing a ready-to-
TEX file.

There’s also a graphical interface to the lan-
guage, with additional interactive features, named

1 It was formerly named euklides, but this name was

already given to other geometry software.

310 TUGboat, Volume 23 (2002), No. 3/4

xeukleides. It was first meant for classroom pre-
sentations, but it can also be seen as a tool to com-
pose and tune some Eukleides code for later inclu-
sion in a LATEX source.

Both programs are released under the GNU

Public License. They were developed on a GNU/
Linux system, and were ported to several operating
systems: NetBSD, FreeBSD, Mac OS X, MS Win-
dows. Their source code is available from CTAN

2 or
the Eukleides home page3 (which also offers GNU/
Linux and Win32 executables).

Around Morley’s triangle

As a first introduction to the Eukleides language,
we’ll study the source code which gives the following
figure. It illustrates Morley’s theorem: The points

of intersection of the adjacent trisectors of the an-

gles of any triangle are the vertices of an equilateral

triangle.

Here is the corresponding code4.

1 A B C triangle

2 a = angle(B,A,C)

3 b = angle(C,B,A)

4 c = angle(A,C,B)

5 ab = angle(vector(A,B))

6 bc = angle(vector(B,C))

7 ca = angle(vector(C,A))

8 l1 = line(A,(ab + a/3):)

9 l2 = line(A,(ab + 2*a/3):)

10 l3 = line(B,(bc + b/3):)

11 l4 = line(B,(bc + 2*b/3):)

12 l5 = line(C,(ca + c/3):)

13 l6 = line(C,(ca + 2*c/3):)

14 D = intersection(l1,l4)

15 E = intersection(l3,l6)

2 In /tex-archive/support/eukleides/.
3 At http://perso.wanadoo.fr/obrecht/.
4 The numbers at the beginning of each line are not part

of it.

16 F = intersection(l2,l5)

17 color(lightgray)

18 draw(l1) ; draw(l2)

19 draw(l3) ; draw(l4)

20 draw(l5) ; draw(l6)

21 color(black)

22 draw(A,B,C) ; draw(D,E,F)

In Eukleides source code, a line can contain
several commands (in that case, they have to be
separated by semicolons). Commands are of two
kinds: variable assignments and graphical com-
mands. Among variable assignments are single as-
signments (see lines 2–16) and multiple assignments
(line 1). A variable can store a wide variety of ob-
jects used in elementary geometry: numbers, vec-
tors, points, lines, segments, circles, conics.

Multiple assignments are used for definitions of
polygons and for some intersection determinations.
The statement in line 1 defines an optimal scalene
triangle such that segment AB is horizontal and 6
cm long. All these characteristics can be modified
by adding some optional parameters to the keyword
‘triangle’. For instance ‘A B C triangle(4,5,6)’
would define a triangle ABC such that AB = 4 cm,
BC = 5 cm and AC = 6 cm.

If the desired triangle has to be of a specific
kind, the simplest way is to replace ‘triangle’ with
‘right’, ‘isosceles’ or ‘equilateral’. For in-
stance ‘A B C right(5,30:,10:)’ would define a
triangle ABC with an angle of 30◦ in A, a right an-
gle in B and such that segment AB measures 5 cm
and makes an angle of 10◦ with the horizontal di-
rection. The colon character is used to distinguish
angular parameters from others (like lengths).

On lines 2–7, one can see two possible usages
of the function ‘angle’. In the first case (lines 2–4),
it simply gives the measures of the angles in trian-
gle ABC. In the second case (lines 5–7), it gives
the argument of some vectors. As with many func-
tions in Eukleides, ‘angle’ can handle several kinds
of arguments.

On lines 8–13 are the definitions of the trisec-
tors of the triangle ABC. Since trisectors (unlike
bisectors) aren’t very common objects, there’s no
built-in function to define them. The function ‘line’
is used instead. Here, the second argument is the an-
gle that the line makes with the horizontal direction.
This is not the only way to define a line: the second
argument could have been a point or a vector.

Graphical commands are of two kinds: setting
commands (see lines 17 and 21) and drawing com-
mands (see lines 18–20 and 22). To draw an object,

TUGboat, Volume 23 (2002), No. 3/4 311

one simply has to use the function ‘draw’. This func-
tion can take additional arguments in order to mod-
ify the aspect of the drawn object (such as ‘dotted’
or ‘dashed’ for lines). On line 22, the arguments
of ‘draw’ are a list of points: it’s the way to draw
polygons. Since polygons are not considered as spe-
cific objects in Eukleides, there’s no need to declare
DEF as a triangle before drawing it.

More graphical commands

Usually, a geometric figure doesn’t contain only
straight and curved lines, but also letters and some
conventional marks (used to make some properties
obvious). Below is a classical example of such a fig-
ure representing a parallelogram.

�

A B

CD

Here is the corresponding code.

1 A B C D parallelogram(5,4,105:)

2 O = barycenter(A,B,C,D)

3 frame(-2,-1,6,4.5)

4 draw(A,B,C,D) ; draw(O)

5 draw("A",A,-130:)

6 draw("B",B,-30:)

7 draw("C",C,50:)

8 draw("D",D,130:)

9 draw(segment(A,C),dotted)

10 draw(segment(B,D),dotted)

11 mark(segment(A,O))

12 mark(segment(O,C))

13 mark(segment(B,O),cross)

14 mark(segment(O,D),cross)

15 mark(B,A,D)

16 mark(D,C,B)

17 mark(C,B,A,double)

18 mark(A,D,C,double)

Since this figure is rather simple (from a ge-
ometrical point of view) only two assignments are
needed. On line 1 is a multiple assignment which de-
fines a parallelogram ABCD such that AB = 5 cm,

AD = 4 cm and B̂AD = 105◦. On line 2, a single

assignment defines O as the center of parallelogram
ABCD.

Even though Eukleides is designed in order to
use as few coordinates as possible, the internal rep-
resentation of the geometrical objects is based on
them. By default, figures are drawn in a frame such
that the lower left corner has coordinates (−2 ; −2)
and the upper right corner (8 ; 6). The function
‘frame’ enables one to change these settings.

As one can see on line 4, the function ‘draw’ is
useful to represent single points (the default shape
is a dot, but it can also be a square or a cross). This
function can also be used to give names to points,5 as
in lines 5–8. Here, the first argument is a string, the
second a point and the third an angular argument
specifying the position of the label. This string can
contain TEX code6 such as mathematical formulas.

On lines 11–18 are the marking commands. It
is possible to mark, in various ways, either segments
(lines 11–14) or angles (lines 15–18).

A classical locus problem

In some situations, a computer screen can be very
useful to teach geometry. For instance, a locus prob-
lem becomes much easier if one can see several states
of the figure. The program xeukleides has been
developed for this. At startup, it appears as a text
editor. If you type the lines below:

1 x interactive(2,.1,0,6,"A",right)

2 A M I equilateral(x)

3 M B J equilateral(6-x)

4 color(lightgray)

5 draw(segment(I,J))

6 color(black)

7 draw(A,M,I) ; draw(M,B,J)

8 draw(barycenter(I,J))

and press the escape key, the text area will be re-
placed by a graphical area containing the following
figure:

�

5 Or to put any kind of text in a specific place.
6 This code will only be interpreted if you run eukleides

and latex. With xeukleides it is displayed verbatim.

312 TUGboat, Volume 23 (2002), No. 3/4

If you now press the right arrow key, you’ll see
the left triangle becoming bigger and the right one
smaller. Pressing the left arrow key performs the
opposite transformation. Pressing the escape key
again switches back to the text editor.

On line 1 of the source code is an interactive
assignment: it allows to modify the value of the nu-
merical variable x (and consequently the figure) by
pressing the arrow keys. The first argument is the
initial value of x, the second the increment which is
added to (subtracted from) x every time the right
(left) arrow key is pressed. The third and fourth are
the optional lower and upper bound. The fifth ar-
gument has to be a string containing a single letter.
It indicates the key that has to be pressed before
modifying the variable.7 This is useful when more
than two variables have to be bound to the key-
board. The sixth argument is either ‘right’ or ‘up’.
It indicates which pair of arrow keys (right/left or
up/down) is bound to the variable.

In an interactive assignment, the initial value
can be modified while viewing. If you press the F1
key, the program replaces the original initial value
in the source code by the last value of the variable
and switches back to the text editor.

The first multiple assignment on line 2 defines
an equilateral triangle AMI such that segment AM

is horizontal and x cm long. The second assignment
defines an equilateral triangle MBJ such that seg-
ment MB is horizontal and 6−x cm long. A specific
feature of polygonal assignments is used here: if the
first variable is already in use (and contains a point)
its content remains the same (if not, the variable is
set to the origin). This implies that segment AB

has a constant length of 6 cm and that M belongs
to AB.

Drawing curves

In elementary geometry, the most usual curves are
conics. Eukleides provides a large number of func-
tion to define and handle these objects. For less
common curves, there’s the ‘trace’ command. For
instance, the figure below illustrates the geometri-
cal definition of a cubic curve known as the Witch

of Agnesi.

7 Since the program starts viewing in state “A”, there’s

no need here to press this key.

�

This curve is obtained by drawing a line from
the origin through the dashed circle, then picking
the point with the x coordinate of the intersection
whith the dashed line and the y coordinate of the in-
tersection with the circle. Here is the corresponding
code:

1 frame(-4,-1,4,3)

2 O = point(0,0)

3 c = circle(point(0,1),1)

4 l = line(point(0,2),0:)

5 trace(t,.1,179.9){

6 L = line(O,t:)

7 O M intersection(L,c)

8 P = intersection(L,l)

9 point(abscissa(P),ordinate(M))}

10 t = 50

11 L = line(O,t:)

12 O M intersection(L,c)

13 P = intersection(L,l)

14 N = point(abscissa(P),ordinate(M))

15 draw(O)

16 style(dotted)

17 draw(segment(M,N))

18 draw(segment(P,N))

19 draw(L)

20 thickness(.5) ; style(dashed)

21 draw(c) ; draw(l)

On lines 2–4 we create the objects which are
needed to define the curve. Lines 5–9 are related
to the ‘trace’ command. They are based on the
geometrical definition above. Line 5 tells variable
t to scan the numbers between8 0.1 and 179.9. A
line-circle intersection can lead to two points, hence
in Eukleides a multiple assignment (like the one at
line 7) is used to obtain these points. Since lines
are implicitly directed, in the present case the first
assigned point will always be O and the second, the
wanted point. The last line (line 9) contains a point

8 These bounds are chosen in order to avoid 0 and 180,

which are invalid and may cause spurious lines to appear.

TUGboat, Volume 23 (2002), No. 3/4 313

valued expression. This is the point which will be
drawn for each value of t.

To draw this curve, it would also be possible
to use parametric representation. Nevertheless, in
the present case the geometrical definition is more
appropriate because the same piece of code can be
used again (in lines 11–14) to produce an example
of the construction.

The last part (lines 15–21) contains the drawing
commands. The setting command ‘style’ changes
the default aspect of drawn objects. This may some-
times shorten the code.

Conclusion

In my humble opinion, Eukleides is now mature
enough to be considered by TEX users as an effective
way to create geometric figures. As a matter of fact,
the language is sufficiently powerful to describe al-
most any figure which can be seen in an elementary
geometry textbook.

My aim is now to enhance Eukleides with fea-
tures such as tests, loops, and user-defined func-
tions. Since I did not anticipate this when I started
the project, I’ll have to rewrite large parts of the pro-
grams. This is a long-term undertaking, so I’ll soon
stop working on the present versions of eukleides

and xeukleides.

� Christian Obrecht

Le Monsard

71960 Bussieres

France

christian.obrecht@wanadoo.fr

http://perso.wanadoo.fr/

obrecht/

