
Another Look at LATEX to SGML Conversion

Sebastian Rahtz
Elsevier Science Ltd

The Boulevard

Langford Lane

Kidlington

Oxford OX5 1GB

UK

Email: s.rahtz@elsevier.co.uk

Abstract

Publishers are starting to use SGML as their permanent form of storage for doc-
uments. How can LATEX files be converted to an SGML instance? This paper
discusses possible strategies, and describes an implementation by Elsevier Sci-
ence of a system based on conversion in TEX itself, and extraction of SGML code
from the dvi file.

The problem

The work outlined in this paper concerns the trans-
lation of LATEX files into SGML. “Why,” the TEX
user asks, “do you want to do this? LATEX produces
nice typeset pages, it’s a worldwide convention for
document interchange, and TEX’s math markup is a
standard.” But “Why,” the SGML people ask, “do
you want to use LATEX at all? SGML is a real, ISO,
standard, with much stronger validation and porta-
bility than TEX, and with a growing set of excellent
tools.” The problem arises for us at Elsevier Sci-
ence because we are caught between two camps. On
the one hand, many of our authors use plain TEX or
LATEX to prepare articles, and we are asked to use
their files. On the other hand, the majority of our
papers come to us in a wide variety of markup and
word-processor formats. We must therefore have a
common markup format to convert them all into.
We could simply use each file in its native format,
be it TEX, Word or Quark Xpress, but then there
are serious practical difficulties:

1. We recognise, like any serious publisher, the
long-term potential of an electronic archive of
material, and we want our ultimate archive to
conform to the most rigorous standards. We
want all our files in the same markup system,
so that we can develop tools for alternative pub-
lishing media, and tools to quality-check the
markup.

2. We do not, by and large, do our own typeset-
ting, but send electronic files to a range of ex-
ternal firms, most of whom prove to be very
reluctant to accept TEX files. We can however
achieve efficient handling of our electronic files

by the typesetters if we supply a single type of
fully-tagged file which contains all the informa-
tion the typesetter needs.

3. We publish over 1000 journals, and a single
LATEX article may arrive for any of several hun-
dred of these; it is not practical or logical to
train all our production editors to deal with
LATEX in a sophisticated way, and it can frus-
tate the process if we have to push occasional
articles onto LATEX-experienced staff.

4. On a purely day-to-day basis, we cannot main-
tain all the possible hardware and software con-
figurations at all production sites, or even keep
all our production editors trained to use the
many different systems and platforms.

The only possible solutions are therefore either to
adopt an ad hoc, temporary, workaround like doing
all our work in Word or Quark, or to invest in a total
conversion to SGML, flexible enough to meet all our
known and perceived future needs. Elsevier Science
made their decision to adopt SGML some years ago,
has developed its own DTDs, and is now engaged in
the mammoth task of converting its journal produc-
tion environment to a system which produces totally
electronic files for typesetting or electronic publica-
tion. The standards and practices adopted are de-
scribed in [3].
Consequently, to achieve a complete rigorous

quality-controlled archive, LATEX files have to be
converted to SGML. But SGML is merely a lan-
guage for describing markup, and ‘conversion’ could
mean little more than syntactic conversion, whereby
all LATEX macros were changed to a corresponding
SGML tag; thus \section is changed to <section>.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 315

Sebastian Rahtz

This is, in effect, the approach adopted by some of
the apparent LATEX⇔ SGML systems — constrain-
ing the DTD to mimic LATEX. What it does not
do is solve the problem of parsing the general TEX
syntax.
Another approach for the particular case of

mathematics is to declare a single SGML element
<texmath>, and leave the math markup exactly as
is. This is attractive, but has two drawbacks:

1. Many authors have dependencies in their
markup on their own definitions, or external
style files; it is not trivial to totally ‘flatten’ all
these references, but if they are left in, it is irri-
tating to have to work around it when the doc-
ument is used later (possibly much later, when
the style files may have changed. . .). An even
worse case is when the author changes defini-
tions half-way through the paper, so that \MyX
expands to X_x^y for the first few equations,
but to X_a^b for the rest — quite legal, how-
ever inelegant.

2. If our archive is to still be useful in 20 years,
it needs to be totally internally consistent and
complete. The <texmath> notation assumes the
existence in 20 years of a program able to parse
it in the same way as TEX does now — likely,
but not under our control.

We are left with having to genuinely translate
arbitrarily-complicated TEX code into ‘real’ SGML;
i.e., our DTD may bear no relation to the logical
structure of LATEX, and we have to deal properly
with mathematics and tables. The remainder of this
paper discusses possible solutions, and describes the
one we have adopted.

Possible solutions

There are four technologies we can adopt:

1. Throw away the electronic file, and retype the
entire text from the printed copy direct into
SGML.

2. Strip out all TEX coding, and treat it like an
unknown word-processor — leave all the words
intact, but re-key all the markup, maths and
tables.

This approach and the first are not as ridiculous
as they sound to TEX experts; they may well be
the cheapest, quickest, most reliable solution for a
small quantity of material. The startup cost is zero,
and the unit cost may be high — but this may be
preferable to a large development cost for a system
which is not heavily used and needs maintenance.
The reasons not to adopt it include the probable
gain in processing time of an automatic conversion,

author satisfaction at decreased proof-reading, and
the potential high cost of this approach for complex
mathematics.

3. Write a new program to parse the LATEX, and
write SGML. The advantages are:

• Writing parsers is a well understood pro-
cess, although the ‘traditional’ lex and
yacc tools are necessarily not suited to
macro languages like TEX;

• We get an efficient, portable program
which (if written well) can be maintained.

• Nothing gets into the output that we do
not understand.

but there are the following disadvantages:

• Parsing TEX is notoriously hard, because
its interface is a macro programming lan-
guage, and thus the syntax is extensible.

• There are no fully-successful implemen-
tations known, although there are many
partial relevant solutions (such as Julian
Smart’s tex2rtf).
• We would have to assume ‘normal’ LATEX,
and hand-fix any strange files.

This approach could involve a two-stage pro-
gram, the first attempting (a more or less im-
possible aim) to regularise the TEX by expand-
ing macros, and the second doing the parsing
and translating. Aspects of this are encapsu-
lated in the Perl script for latex2html (dis-
cussed in useful detail in [1]), but the philos-
ophy of that system is to convert anything it
cannot understand into a picture (via TEX and
PostScript to GIF), which means that it does
not really try to be a robust TEX parser.

4. Work with TEX itself, to take advantage of
the entire macro-processing language and input
parser, but fix the output to produce SGML
instead. Joachim Schrod [4] has exposed the
myth that TEX cannot be recoded in a more
open system, and his implementation would be
a good starting point for a TEX-like program.
We can also, however, simply write a special
purpose TEX format which defines all the in-
teresting TEX and LATEX constructs as SGML
commands, and extracts the information from
the dvi file after processing. This is the basis of
the approach we are considering using. It has
some considerable advantages:

• The task of parsing the TEX language (ex-
panding the macros) comes ‘for free’;

• The conversion from LATEX construct to
SGML construct is done in the same lan-
guage as the original definition; it can also

316 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

be customised by existing LATEX-trained
staff;

• The system is portable, easily modu-
larised, and can cope with any form of
TEX (with the appropriate macro pro-
gramming);

while on the downside

• The output is not regularised, since only
some items (those foreseen) are trapped;
everything else passes through TEX’s pro-
cesses, which can be both good and bad;

• Writing sophisticated programs in TEX is
not easy, or well-understood, constraining
future contract programmers to be TEX-
qualified;

• Some things may not be possible at
the macro redefinition stage, notably in
maths;

• Extracting material from the dvi file is far
from easy.

The third approach has been tried and tested by
Bart Wage (Elsevier Amsterdam) for a very large
number of relatively simple documents (the front
matter of articles), but the program was becoming
unwieldy when trying to extend it to the full range
of papers we publish. This then was the impetus for
the system described in this paper. The approach of
rewriting TEX innards has been largely completed by
ICPC (Dublin)1 with a reworking of the basic WEB
code, and this is certainly the most reliable plan
of attack; however, it still requires extensive macro
programming to get the most from the system, and
so the majority of our work is unaffected.

A practical solution

Given the advantages and disadvantages outlined
above, we decided to experiment with a TEX-based
approach; we knew that we had the existing tradi-
tional parsing program to fall back on, and we knew
that ICPC were working on a radical solution alter-
ing TEX. The main reason for wanting TEX to do
the parsing was that our author LATEX markup is
extremely variable, and essentially beyond our con-
trol; maximum flexibility and ease of ad hoc quick
fixes was therefore important. It must be stressed
that this is a solution tailored to a particular setup;
it is not necessarily the best universal solution!
The general outline of our system is shown in

Fig. 1. The steps, which are discussed in detail in
the next section, are:

1 Contact Seamus McCague (seamus@icpc.ie) for details.

1. Roughly clean up the LATEX, and impose some
standard markup;

2. attach the lat2cap package, and run LATEX
(twice, for cross-referencing);

3. extract the SGML text from the DVI file;

4. clean up the SGML and parse it against an in-
termediate DTD;

5. transform to the final Elsevier article DTD, and
parse again.

The justification for the extra stage of inter-
mediate DTD is very dependent on the relationship
between the LATEX markup in use, and the DTD. In
our case, we found that although we could match up
most structures directly, some of the LATEX was not
amenable to a one-pass program.

Details of the system

Cleaning the LATEX Since our approach is to re-
define TEX macros to produce SGML tags, we could
in theory cope with any dialect of TEX; in prac-
tice, however, our articles are structured in a clear,
but complicated way, and it is preferable to get the
information right before we look at converting it.
We have maintained a set of LATEX style files for
some years for internal typesetting of many journals,
which are used in conjunction with a single public
preprint style, which implements all the constructs
in a typographically simple way. The complexity is
largely in the front matter, as shown in Figs. 2 and
3, where we present the input markup, and one style
of typeset output. Almost all author files need some
work in this area, so it makes sense to concentrate
the translation assuming the editing has been done.
A more important consideration is the richness

of the LATEX. In theory, a valid LATEX file:

\documentclass{article}

\begin{document}

ABOUT CATS

by

Seroster

once upon a time...

\end{document}

could be correctly translated to

<article>ABOUT CATS<p><p>by<p><p>

Seroster<p>once upon a time...

</article>

but this is hardly useful. For an article to have some
value in an electronic warehouse, we must minimally
identify in an unambiguous way the following ele-
ments:

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 317

Sebastian Rahtz

DVI file dvi to SGML clean SGML

‘latart’ SGML

Parse SGML

Valid SGML

fails

correct macro package

error

Edit & Clean

Run lat2cap

Normal LATEX

Run LATEX

Printed proof

Author file

Transform to

DTD
Elsevier article valid SGML

Figure 1: Processing scheme for LATEX to SGML

1. the authors and their addresses;

2. the title, abstract and keywords;

3. section headings;

4. bibliographical references and citations;

5. figure references.

We may find it useful, in fact, to distinguish 4 ‘types’
of LATEX file:

Bad It passes through LATEX, but very low-
level visual markup is used; this file says
Figure {\cmbxten 66}

Clean Composed according to the commands in
the LATEX manual, but without utilizing the
abstract features like cross-referencing, floating
figures etc.; this file says Figure~\textbf{66};

Rich Uses all the commands of the LATEX manual,
at the highest level possible for the context; this
file says \figname~\ref{fig66}

Over-ripe This file has no spelling or grammatical
mistakes and has not used any visual markup;
it says \FIG{66}, with a single definition in a
separate macro package allowing the caption to
be placed above or below the figure.

It is clear that only ‘rich’ LATEX or better can be
translated to useful SGML; the alternative is to do
all the cleanup at the SGML stage, but this has the
disadvantage that we have no macro language; a 100
page LATEX article with generic, but wrong, markup

may require a single change, the SGML output needs
hundreds. This is discussed further below (“Where
in the work-flow?”).

The macro package The bulk of our work consists
in redefining every possible LATEX command, at as
high a level as possible. We present below selections
from the macro package, showing those which are
less than obvious.
Basic tools In order to simplify the TEX output,
our first aim is to constrain and nullify the vast ma-
jority of low-level visual markup code. We set ev-
erything in LATEX2ε’s T1 encoding, in a single font
which is completely monospaced and allows no hy-
phenation. The use of T1 means that LATEX will
automatically translate all accented and non-ASCII
characters, which may be entered with TEX macros,
into 8-bit characters in the output. Our dvi proces-
sor will translate these into the appropriate SGML
entities or accent tags.

1 \def\baselinestretch{1}

2 \DeclareFontShape{T1}{sgml}{m}{n}{<-> sgml}{}

3 \DeclareFontShape{OT1}{sgml}{m}{n}{<-> sgml}{}

4 \fontencoding{T1}\let\fontencoding\@gobble

5 \fontfamily{sgml}\let\fontfamily=\@gobble

6 \fontseries{m}\let\fontseries=\@gobble

7 \fontshape{n}\let\fontshape=\@gobble

8 \fontsize{10}{10pt}\let\fontsize=\@gobbletwo

9 \global\let\mathversion\@gobble

10 \global\let\getanddefine@fonts\@gobbletwo

318 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

\begin{document}
\volume{33} \issue{4} \ssdi{93}{E0045F}
\accepted{4 Kal 44} \received{2 Kal 44}
\firstpage{101} \runauthor{Cicero, Caesar and Vergil}
\runtitle{In Catilinam}
\begin{frontmatter}
\title{In Catilinam IV: A murder in 5 acts\thanksref{X}}
\author[Paestum]{Marcus Tullius Cicero\thanksref{Senate}}
\author[Rome]{Julius Caesar}
\author[Baiae]{Publius Maro Vergilius}
\thanks[X]{This is the history of the paper, etc etc}
\address[Paestum]{Buckingham Palace, Paestum}
\address[Baiae]{The White House, Baiae}
\address[Rome]{Senate House, Rome}
\thanks[Senate]{Partially supported by the Roman Senate}
\begin{abstract}
Cum M.~Cicero consul Nonis Decembribus senatum in aede
Iovis Statoris consuleret, quid de iis coniurationis Catilinae
sociis fieri placeret, qui in custodiam traditi essent, factum
est, ut duae potissimum sententiae proponerentur, una D.~Silani consulis
designati, qui morte multandos illos censebat,
altera C.~Caesaris, qui illos publicatis bonis per municipia
Italiae distribueudos ac vinculis sempiternis tenendos existimabat. Cum
autem plures senatores ad C.~Caesaris quam ad
D.~Silani sententiam inclinare viderentur, M.~Cicero ea, quae
infra legitur, oratione Silani sententiam commendare studuit.
\end{abstract}

\begin{keyword}
Cicero; Catiline; Orations
\end{keyword}
\end{frontmatter}

Figure 2: Example Elsevier front-matter markup

A Journal Of Research 33 (1995) 101–105
c© Elsevier Science Limited

Printed in Great Britain. All rights reserved
0 0 0 0 – 0 0 0 0 (0 0) X X X X X – X X 000–0000/95/$9.50

InCatilinamIV:Amurderin5acts 1

Marcus Tullius Cicero ∗,2 Julius Caesar‡ Catullus ‡ Publius Maro Vergilius †
∗ Buckingham Palace, Paestum
† The W hite House, Baiae
‡ Senate House, Rome

(Received 2 Kal 44; accepted 4 Kal 44)

Cum M. Cicero consul Nonis Decembribus senatum in aede Iovis Statoris con-

suleret, quid de iis coniurationis Catilinae sociis fieri placeret, qui in custodiam tra-

diti essent, factum est, ut duae potissimum sententiae proponerentur, una D. Silani

consulis designati, qui morte multandos illos censebat

Altera C. Caesaris, qui illos publicatis bonis per municipia Italiae distribueudos

ac vinculis sempiternis tenendos existimabat. Cum acautem plures senatores ad

C. Caesaris quam ad D. Silani sententiam inclinare viderentur, M. Cicero ea, quae

infra legitur, oratione Silani sententiam commendare studuit.

Key words: Cicero; Catiline; Orations

Figure 3: Elsevier front-matter typeset

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 319

Sebastian Rahtz

11 \selectfont

12 \def\selectfont{}

Within our SGML DTD there is no requirement
for typesize markup, so for authors who use size-
changing commands we simply nullify them:

1 \let\normalsize\relax

2 \let\tiny\relax

3 \let\scriptsize\relax

4 \let\footnotesize\relax

5 \let\small\relax

6 \let\large\relax

7 \let\Large\relax

8 \let\LARGE\relax

9 \let\huge\relax

10 \let\Huge\relax

Writing SGML tags \SGML is a special command
to emit SGML tags; it is important to do this, rather
than use the actual <, > and & characters, as those
will be translated to entities by the later processing.
Note that our dvi processor will emit the parameter
of the \special command as literal text.

1 \def\ENT#1{\leavevmode\special{&}#1;}

2 \long\def\SGML#1{\leavevmode

3 \special{<}#1\special{>}}

Headings Headings are treated differently to
LATEX in the Elsevier DTD; there is only one head-
ing tag, but nesting is used to indicate hierarchy. We
need to trace the section depth and close open levels
at the right time. The actual title of the section is
not an attribute or context of the tag, but comes in
a separate section title tag. We therefore define a
single macro which takes each sectioning command,
with a level, and keeps track of what level we are at,
ending and starting heading elements as needed.

1 \def\@dblst#1#2{{\@Section{*}{#1}{#2}}%

2 {\@Section{}{#1}{#2}}}

3 ...

4 \def\section{\expandafter\secdef

5 \@dblst{2}{section}}

6 ...

7 \def\@Section#1#2#3{%

8 \@ifnextchar[%

9 {\@@Section{#1}{#2}{#3}}%

10 {\@@Section{#1}{#2}{#3}[]}%

11 }

12 \newcount\current@sectionlevel

13 \current@sectionlevel=99

14 \def\@@Section#1#2#3[#4]#5{%

15 \ifnum\current@sectionlevel=99\else

16 \loop

17 \ifnum\current@sectionlevel>#2

18 \typeout{Section level #2 inside

19 \the\current@sectionlevel}%

20 \advance\current@sectionlevel by -1

21 \SGML{/sec}%

22 \repeat

23 \ifnum\current@sectionlevel=#2

24 \SGML{/sec}

25 \fi

26 \fi

27 \global\current@sectionlevel#2

As we will see later, the cross-referencing mechanism
is altered to use unique tags for all sections, not just
those labelled with \label.

1 \refstepcounter[secr]{#3}%

2 \SGML{sec id=#3.\@currentSlabel}%

3 \SGML{st}#5\SGML{/st}%

4 \SGML{p}%

5 }

List environments These can be dealt with
straightforwardly, as the match between the DTD
and LATEX is almost 100%.

1 \def\item{%

2 \@ifnextchar [{\@item}{\SGML{li}}%

3 }

4 \def\@item[#1]{\SGML{li id=#1}}

5 \renewenvironment{enumerate}

6 {\SGML{l type=ord}}{\SGML{/l}}

7 \renewenvironment{itemize}

8 {\SGML{l type=unord}}{\SGML{/l}}

9 \renewenvironment{description}

10 {\SGML{l type=def}}{\SGML{/l}}

11 \def\quote{\SGML{qd}}

12 \def\endquote{\SGML{/qd}}

13 \let\quotation\quote

14 \let\endquotation\endquote

15 \def\\{\SGML{p}}

Font changes The Elsevier DTD supports a wide
range of typeface changes in the same way as LATEX
does:

1 \def\it{\SGML{it}\aftergroup\ENDTAG}

2 \def\bf{\SGML{b}\aftergroup\ENDTAG}

3 \def\sl{\SGML{it}\aftergroup\ENDTAG}

4

5 \def\ENDTAG{\SGML{/}}

6 \let\/=\relax

7 \def\textrm#1{\SGML{rm}#1\SGML{/}}

8 \def\textsf#1{\SGML{ssf}#1\SGML{/}}

9 \def\texttt#1{\SGML{ty}#1\SGML{/}}

10

11 \def\emph#1{\SGML{it}#1\SGML{/}}

Bibliographic citations

1 \def\@citex[#1]#2{%

2 \SGML{bbr id="bib-#2"}#1%

3 }

4 \def\check@bb{%

5 \if@in@bb\SGML{/bb}\@in@bbfalse\fi

6 }

7 \def\@lbibitem[#1]#2{%

8 \check@bb

9 \SGML{bb id="bib-#2"}%

10 \global\@in@bbtrue

320 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

11 }

12 \def\@bibitem#1{%

13 \check@bb

14 \SGML{bb id="bib-#1"}%

15 \global\@in@bbtrue

16 }

17 \def\thebibliography#1{%

18 \SGML{bm}\SGML{bibl}%

19 \let\\\relax

20 }

21 \def\endthebibliography{%

22 \check@bb

23 \SGML{/bibl}%

24 }

Cross-referencing Anything which can be refer-
enced advances some counter; we overload this to
put in an SGML id, and make a note of that for
later use in \label. An extra parameter is writ-
ten to the .aux file, adding an identifier to the lit-
eral page number and section number. This will fail
badly if \theS<name> does not expand to a sensible
reference. This means that classes or package which
introduce new elements need to define an equivalent
\theS<name> for every \the<name>
These shenanigans are to make sure sec-

tion numbers, etc., are always arabic, separated
by dots. Who knows how people will set up
\@current label? If they put spaces in (quite le-
gal) then the processor will get upset.

1 \def\pageref#1{\SGMLWarning{pageref}}

2 \let\vref\ref

3 \long\def\footnote#1{%

4 \refstepcounter[fnr]{Sfootnote}%

5 \SGML{fn id=Sfootnote.\@currentSlabel}%

6 #1\SGML{/fn}%

7 }

8

9

10 \def\@setref#1#2#3{%

11 \ifx#1\relax

12 \protect\G@refundefinedtrue

13 ??

14 \@latex@warning{Reference ‘#3’ on page

15 \thepage \space undefined}%

16 \else

17 \special{<}%

18 \expandafter\@secondoftwo#1{%

19 \expandafter#2#1\null}%

20 \special{>}%

21 \fi}

But all this is very flaky, and open to abuse.
Styles like subeqn will mess it up, for starters. Ap-
pendices are an issue, too. We just hope to cover
most situations. We can at least cope with the stan-
dard sectioning structure, allowing for \part and
\chapter.

1 \@ifundefined{thepart}{}{%

2 \newcommand\theSpart{\arabic{part}}}

3 \@ifundefined{thechapter}{%

4 \newcommand\theSsection{\arabic{section}}

5 \newcommand\theSfigure {\arabic{figure}}

6 \newcommand\theStable {\arabic{table}}

7 }{%

8 \@ifundefined{thepart}%

9 {\newcommand\theSchapter

10 {\arabic{part}.\arabic{chapter}}}

11 {\newcommand\theSchapter

12 {\arabic{chapter}}}

13 \newcommand\theSfigure

14 {\theSchapter.\arabic{figure}}

15 \newcommand\theStable

16 {\theSchapter.\arabic{table}}

17 \newcommand\theSsection

18 {\theSchapter.\arabic{section}}

19

20 }

21 ...

22 \newcommand\theSequation

23 {\theSsection.\arabic{equation}}

24 \newcommand\theStheorem

25 {\theSsection.\arabic{theorem}}

26 \newcommand\theSthm

27 {\theSsection.\arabic{thm}}

28 \newcommand\theSenumi

29 {\theSsection.\arabic{enumi}}

30 ...

31 \newcommand\theSSfootnote

32 {\arabic{Sfootnote}}

33 ...

34 \let\theSHmpfootnote\theSSfootnote

35 \let\S@refstepcounter\refstepcounter

36 \def\refstepcounter{\@ifnextchar[%

37 {\@refstepcounter}%

38 {\@refstepcounter[]}}

39 \def\@refstepcounter[#1]#2{%

40 \ifx\\#1\\\edef\@sgmlname{#2}%

41 \else

42 \def\@sgmlname{#1}

43 \fi

44 \S@refstepcounter{#2}%

45 \S@makecurrent{\@sgmlname}{#2}%

46 }

47 \def\S@makecurrent#1#2{%

48 \edef\@currentSlabel{%

49 \csname theS#2\endcsname}%

50 \global\edef\@currentSref{%

51 #1 id="#2.\expandafter\strip@prefix

52 \meaning\@currentSlabel"}%

53 }

54 \def\label#1{%

55 \@bsphack

56 \protected@write\@auxout{}%

57 {\string\newlabel{#1}{%

58 {\@currentSref}}}%

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 321

Sebastian Rahtz

59 \@esphack

60 }

Mathematics and tables Surprisingly, the ma-
jority of mathematics requires fairly trivial redefini-
tion; powerful and complicated as TEX’s math type-
setting is, we simply ignore it.

1 \catcode‘\^=13 % circumflex for superscript

2 \catcode‘_=13 % underline for subscript

3 \def\frac#1#2{\SGML{fr}\SGML{nu}#1

4 \SGML{de}#2\SGML{/fr}}

5 \def _#1{\SGML{inf}#1\SGML{/inf}}

6 \def ^#1{\SGML{sup}#1\SGML{/sup}}

The real implementation of ^ in our package is ac-
tually rather more complicated than presented here,
because it has to cope with markup like this:

x^\frac{a}{b}

which is in fact only barely tolerated in LATEX. In
this situation, the parameter to ^ ends up as \frac
unless we take special precautions.2 Many macros
just output the right SGML entity.

1 \def\alpha{\ENT{alpha}}

2 \def\beta{\ENT{beta}}

3

4 \def\vartriangleleft{\ENT{vartriangleleft}}

5 \def\vartriangleright{\ENT{vartriangleright}}

6 \def\vartriangle{\ENT{vartriangle}}

7 \def\veebar{\ENT{veebar}}

8 \def\left#1{\SGML{fen}\SGML{cp style="#1"}}

9 \def\right#1{\SGML{/fen}}

The remainder of the mathematical work, includ-
ing equation labelling and numbering, and tables,
involves quite straightforward macro programming,
albeit somewhat byzantine at times.
TEX accentuation is handled by a similar

scheme in our DTD.

1 \def\acute#1{\SGML{a}\SGML{ac}#1

2 \SGML{ac}\ENT{acute}\SGML{/a}}

3 \def\grave#1{\SGML{a}\SGML{ac}#1

4 \SGML{ac}\ENT{grave}\SGML{/a}}

5 ...

DVI to ASCII We have now written a typeset
page of text in a monospace font interspersed with
\special commands relating to < and > characters;
we are not at all interested in the layout, we just
want the words, and all vertical and horizontal spac-
ing turned to simple spaces. There have been a vari-
ety of ‘dvi2tty’ programs written over the years, but
most of them are aiming to produce crude ASCII lay-
out; after some experimentation, Geoffrey Tobin’s
excellent dv2dt program was found. This, and a

2 We owe the solution to Alan Jeffrey, David Carlisle,
Chris Rowley and Michael Downes, almost simultaneously.
Seldom can such a concentration of LATEX brain-power have
been used to crack such a small nut.

companion dt2dv, provides a reliable, and easy to
understand, text representation of a dvi file which
can even be edited and turned back to dvi. Work-
ing with an ASCII representation means that it is
easy to check and debug one’s work, and writing a
parser in Flex is simple. A flavour of the ‘dt’ lan-
guage can be gleaned from this example; text is in
round brackets, and the w commands are horizontal
spacing.

special1 1 ’<’

(fn)

(id=Sfootnote.1)

special1 1 ’>’

(Everyone)

w3 218453

(likes)

w0

(cat)

w0

(meat)

special1 1 ’<’

(/fn)

special1 1 ’>’

w0

special1 1 ’<’

(li)

special1 1 ’>’

(dogs)

w0

special1 1 ’<’

(/l)

special1 1 ’>’

Our parser needs to read this, output the words and
\special commands, insert spaces, and convert any
non-ASCII characters to SGML entities. Readers fa-
miliar with Flex will see from the following fragment
how trivial this is:

<SKIP>"\(" BEGIN TEXT ;

<SKIP>"special1 "[0-9]+" ’"

{ BEGIN SPECIAL ; } ;

<SPECIAL>"[^’]*" { printtext(yytext); };

<SPECIAL>"’" BEGIN SKIP ;

<TEXT>"\)" BEGIN SKIP ;

....

<SKIP>"s1 249"

printtext("<a><ac>u<ac>`") ;

....

<SKIP>^z { printtext("<P>"); };

<SKIP>^[rwy] { printtext(" "); };

<SKIP>. |

<SKIP>\n { } ;

Cleaning the SGML Unfortunately, LATEX has a
strange way with paragraphs (as indeed do SGML
DTDs), and understanding the vertical and horizon-
tal spacing in a dvi file is slightly fraught; there-
fore we run a simple cleanup to remove extraneous

322 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

<p>s and empty tags, and add some miscellaneous
markup.

Transforming the SGML Now to the crux of any
LATEX to SGML program— what is the target DTD?
Do we go for a translation all the way, or adopt the
strategy of the ‘Rainbow’ tools, and work to an in-
termediate DTD from which we can transform to
the desired result? It is important to distinguish
between transforming, and upgrading; if we write
‘poor’ SGML, we cannot reliably upgrade it to ‘rich’
SGML, whereas ‘rich’ SGML in dialect A can cer-
tainly be transformed to dialect B with no problem.
This is one of the tasks for which DSSSL will be
useful in the longer term, but for this purpose we
use a public domain Perl5 module for manipulating
SGML instances. To ensure that the output is cor-
rect, the file is parsed using James Clark’s nsgmls,
and the standard ESIS output from that program is
then read by the transformer, writing the final out-
put. This is of course again parsed against the real
DTD before the program run is deemed successful.
A simple example may suffice to show why this

last transformation stage is necessary. A typical
piece of LATEX often contains eqnarray structures,
or multi-line equations. In LATEX, lines end with a
\\, and only then do we find if they are numbered.
In the Elsevier DTD, this would be represented as
a series of math displays nested inside an outer dis-
play. No doubt one could program this in LATEX,
but it is simpler to convert the end of line \\ to a
special tag, and transform the result later.
A harder problem, which we do not in fact face

(since we know it can be fixed in the editing phase),
is to deal with

1 {A \over B} 2

with TEX programming, since in the simple redefini-
tion of macros we do not realise we are in a ‘fraction’
until the group has started, and we have no way of
back-tracking to put in a tag at the start of the con-
struct. By contrast, the LATEX notation

1 \frac{A}{B} 2

is easy to transform immediately to

1<fr><nu>A<de>B</fr>2

Where in the work-flow?

Once the technical problem is solved, we still have to
consider where in the work-flow it is used. These are
some of the issues we have to face in a production
environment:

1. Who runs the converter? Disk administrator,
desk editor or special LATEX editor? Do we send
it all to an outside contractor?

2. What if it goes wrong? Are problems fixed in
LATEX or SGML? Does the SGML editing tool
permit illegal SGML to be imported?

3. Is copy-editing done in SGML or LATEX? Some
regular markup by the author may well be far
easier to change once in LATEX than the ex-
panded form in SGML.

There are also some miscellaneous issues to con-
sider:

1. What about author graphics created in TEX?
These can be very sophisticated. The best so-
lution would be to run the article through LATEX
and extract the pages as PostScript output, but
this requires some confidence with, and knowl-
edge of, TEX.

2. What do we do with LATEX constructs which
have no corollary in the Elsevier DTD? Two
obvious examples are chemical structures, and
the the formal Z schemas used in computer sci-
ence, like this:

Shape

colour : Colour

perim : R

perim > 0

This class has 2 constants colour

and perim.

x , y : R

INIT

x = y = 0

Translate

∆(x , y)
dx?, dy? : R

x ′ = x + dx?
y ′ = y + dy?

Conclusions

There remain, of course, three questions:

1. Does this approach work, other than as a toy?

2. Are we actually using it?

3. Where can it be found?

In our experience, no TEX-related project works
100% reliably without manual intervention; this one
is no exception. The approach works, but it is likely
that a sophisticated TEX programmer could quickly
produce a file which produced inappropriate output.
However, we do claim that it succeeds in its aim,

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 323

Sebastian Rahtz

and that we have a usable, maintainable, and flexi-
ble tool.
To enable the generation of SGML from LATEX,

we are now seriously testing this tool, and using it
in pilot projects; it remains to be seen whether or
not it will move into full production, or whether the
maintenance implications will be deemed too ineffi-
cient for the potential volume of material.
The approach outlined in this paper relies al-

most entirely on TEX programming, and the princi-
ples followed are all demonstrated above. The com-
plete style file has not been placed in the public
domain, because it represents a not inconsiderable
(ongoing) investment by Elsevier Science, and be-
cause it is not a general-purpose tool to translate
LATEX to arbitrary DTDs. However, those interested
in discussing this approach are invited to contact Se-
bastian Rahtz directly. TEX wizards will learn that
many problems are still to be solved, or dealt with
in a considerably more elegant way.

Acknowledgements

The genesis of this project was work done by Michel
Goossens at CERN in 1993 to convert LATEX docu-
ments to HTML, using the ‘dvi to ASCII’ program
of Alexander Samarin and Basil Malyshev. At El-
sevier, detailed discussion with Bart Wage turned
the idea into reality, and he wrote the second half
of the system. The LATEX package shares material
with the author’s hyperref package (see [2]). Peter
Flynn and Jonathan Fine, in their different ways,
have made contributions to the TEX and SGML re-
lationship which impacted on this work. Joachim
Schrod read this paper and gave extremely helpful
feedback on it, and the subject in general. Later ver-
sions of the package will hopefully take advantage of
his many good suggestions.

References

[1] Michel Goossens and Janne Saarela, “From
LATEX to HTML and Back”, TUGboat, 16(3),
1995.

[2] Yannis Haralambous and Sebastian Rahtz,
‘LATEX, hypertext and PDF, or the entry of
TEX into the world of hypertext’, TUGboat,
16(2), 1995.

[3] Martin Key, ‘Theory into Practice: working
with SGML, PDF and LATEX at Elsevier Sci-
ence’, Baskerville 5 (2), 1995.

[4] Joachim Schrod ‘Towards interactivity for
TEX’, TUGboat 15(3), 1994 (Proceedings of the
1994 TEX Users Group Annual meeting), 309–
317.

324 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

