
Design by Template in a Production Macro Package

Michael Downes
American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904 USA

rnjd@math.ams.org

Abstract

The American Mathematical Society has been involved in the development of TEX
from the beginning and began using it for journal production ten years ago; we
now produce nearly all of our publications (a couple of dozen journals and book
series) with TEX, using AMS-developed macro packages. One of the goals set for
a major overhaul of the primary in-house macro package, begun in 1992, was
to make revisions to the visual design of a given publication easier. In the new
version of the macro package the design specifications for a particular document
element (such as an article title) are not embedded in TEX code, but are entered into
an element specs template that is comparatively easy to read and modify, and that
corresponds more directly to traditional book design specs (e.g., vertical spacing
is expected to be given in base-to-base terms).

Introduction tween the author and the comuositor, who were not

Some of the terms used herein have a specialized
meaning in the publishing industry; two that should
be mentioned in particular are composition, mean-
ing the general process of composing characters into
words, paragraphs, and pages (hstorically done by
setting lead characters in type frames, nowadays
done with software), and design, meaning the visual
style and physical layout of a book or other publi-
cation, including choice of fonts, dimensions of the
type block, and arrangement of document elements.
Publishers employ freelance or in-house publication
designers (more commonly known as book designers)
to analyze authors' manuscripts and devise appro-
priate designs.

The transition of the publishmg industry in the
last few decades to worlung with electronic docu-
ments was impelled initially by the desire for more
efficient production of traditional printed forms. It
has become clear by now, however, that the elec-
tronic document should be the primary goal of au-
thors and publishers; and moreover, that documents
in information-rich formats such as SGML are many
times more valuable than documents limited to a sin-
gle medium and visual format. The challenge now for
compositors is to make composition software that
enables the composition process to be driven more
directly by an electronic document, when the con-
tent and structure of the document are adequately
marked. Given a visual design in suitable form, the
typesetting operations to be applied can in principle
be deduced from the information present in the doc-
ument. If software can do this task, it will render
unnecessary some of the expensive rote work tradi-
tionally done by human copyeditors when marking
up manuscripts with instructions for the composi-

expected to understand each other's language. And
the book designer may be thought of as the linguist
who wrote the bilingual dictionary used by the copy-
editor in doing the interpreting.

Book designers use a hgh-level, rather infor-
mal language that has evolved over the last few cen-
turies together with printing technology and meth-
ods. By 'informal' I mean that traditional book de-
sign specifications aren't sufficiently detailed and
well-structured to be directly interpreted by typeset-
ting software, even after doing the obvious stream-
lining of vocabulary and syntax. In the past the
work of translating book designs into suitable type-
setting operations was done by skdled compositors
who brought to the translation process a great deal
of enriching knowledge and craftsmanship. In recent
years, the computerization of typesetting has shifted
more and more of that knowledge and craftsmanship
into typesetting software.

But the state of the TEX world today is that
not enough of the knowledge and craftsmanship has
been transferred to the software. There is a wide
gap between the customary design specs that pub-
lishers pay designers for, and the actual application
of a design to the pure information content of a docu-
ment by a TEX macro package. Outside the sphere of
TEX, this gap is usually closed by idiosyncratic style-
sheet capabilities of commercial publishing software
ranging from word-processors to hgh-end publish-
ing systems. The internal format used for holding
style information, the internal typesetting operations
used to apply the style information, and the under-
lying analysis of document design are proprietary
information, and I imagine that not too many soft-
ware companies are rushing to make theirs public.

tor. The copyeditor served as a sort of interpreter be-

360 TUGboat, Volume 1 5 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

The language used in FOSIS' is the only major, pub-
licly accessible attempt I know of to formalize visual
document design into a standard language suitable
for automated typesetting. And as it is, FOSIs only
deal with abstract specifications; you still have to
make your typesetting software understand the el-
ements of a FOSI and do the right thmg with them.
An extended discussion of using TEX and FOSIs to-
gether appeared not long ago in TUGboat (Dobrowol-
ski 1991).

In the TEX world the gap between design and
actual typesetting is usually bridged only by the
brow-sweat of a skilled T~Xnician. Consider these
design specifications for an article abstract:

AB: Abstract. Body text 8/10 Times Roman jus-
tified x 27 picas, indented 1 1/2 picas, para in-
dent lem. Heading "Abstract" and period set 8/10
Times Roman bold, flush left x 27 picas, followed
by N space, run in body text. 18 points base-to-
base above and below.

As written in typical TEX macro code, the AB
element described above might look roughly like this:

\de f \abs t rac t { \par

\ i f d i m \ l as tsk i p<\medski pamount

\removelastski p \medski p

\f i
\begingroup \pa r i ndent lem

\ l e f t s k i p = l . 5pc \ r i g h t s k i p = \ l e f t s k i p

\ t ypes i ze {8 } { lO } \ j us t i f y

\noindent { \ b f Abstract.\enspace}}

\def \endabstract{ \par \endgroup

\i f d im \ l a s t s k i p<\medski pamount

\remove1 as tsk i p \medski p

\fi 1

In Q X you could avail yourself of the l i s t
environment to simplify the task. But it remains
clearly a TEX macro writing task, needing to be done
by someone farmliar with TEX.

Given that the limits of book design are scarcely
less wide than the limits of human visual imagina-
tion, it's unlikely that custom programming d l ever
disappear from the picture; unprecedented demands
will always require new solutions. Nevertheless, the
majority of scientific and academic publications have
scholarly communication rather than visual design
innovation a s their raison d16tre, and hence are char-
acterized by relatively sober designs with many rou-
tine aspects suitable for automation. Most typeset-
ting software doesn't do as much as users would like
to make the routine aspects easy to deal with:

The frequent need for new or differently for-
matted entities presents a serious problem. It

FOSI: Formatted Output Specification Instance.
Part of the U.S. Department of Defense CALS initia-
tive, see Mil. Std. MIL-M-28001B.

is typical, that either there are too many lirni-
tations on the lund of formatting that can be
prescribed, or else the formatting prescrip-
tions are very difficult to write and compre-
hend. - Bo Stig Hansen (1990)

TUGboat articles about the Lollipop macro package
by Victor Eijkhout (1992), and the ZZTEX macro pack-
age by Paul Anagnostopoulos (1992), show some-
thing of what is possible with TEX.

The design-to-typesetting gap needs to be
bridged from two directions: from the designer end,
by a careful analysis of document design, leading to
a formalized (to the extent possible!) language for
prescribing design elements and rules, independent
of any particular typesetting s ~ f t w a r e ; ~ and from
the TEX end, by more powerful and flexible macros
that match up with the design analysis (along the
lines of WX's \@star t sec t ion and \@hangfrom).
If these two pieces are done well, then the process of
transferring a document design from the designer's
mind to the typesetting software can be made very
easy.

In this paper I discuss some methods being
employed to bridge the design-to-typesetting gap
in a large TEX macro package, developed over the
past two years for use at the American Mathematical
Society as the in-house, production-oriented version
of the publicly available AMS-TEX package. As
the new package has no established name (we've
been just calling it 'the new production system') I
suppose I'd better define a name of convenience
for use hereinafter. Let's call it DBT: design-by-
template system. Although there's more to it than
the visual design-related features, that should serve
well enough.

The goals of DBT, as compared to its predeces-
sor, include:

1. improvements in document markup to enrich
and regularize the information content of docu-
ments passing through the AMS production sys-
tem;

2. more sophisticated formatting routines to solve
fundamental TEX typesetting problems;

3. change management;

4. a 'fill-in-the-blank' system for specifying the vi-
sual design of a given publication through sim-
ple variable assignments rather than through
TEX macro programming.

As an example of the second item, the page-
breaking routines in the new macro package auto-
matically allow a page to run half a line long or short
to accommodate the deviation from the text grid that
occurs more often than not in pages containing many

2 Here I echo the call for a 'front end programming
language for style design' of Victor Eijkhout and
Andries Lenstra (Eijkhout and Lenstra 1991).

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

\thm{9) The elegance of a mathematical
result i s equal to the quotient of power Theorem 9. The elegance of a mathematical result is

and length: $E = P/L$.\endthm equal to the quotient of power and length: E = PIL.

Figure la: Document source text for a theorem.
Figure lb: Output of the given theorem.

[THMldescri p t i on : {theorem}

[THM] types i ze: { l o }
[THM] 1 i nespaci ng : (12)

[THM] f o n t : {it}

[THM] wordspaci ng : {\normal wordspaci nge)

[THM] case : {\normal case@}

[THM] j u s t i f i c a t i o n : {%

\ f u l l j u s t i f i cat ion@{\colwidth}}

[THM]paragraphshape:{\indented@(18pt}}

[THM]breakbefore:{\badbreak@{l}}

[THM]spacebefore:{%

1.5\1 i nespaci ng plus. 25\l i nespaci ng}

[THM]breakafter:{\goodbreak@{l}}
[THM]arrangement:{R head * . {\enskip} body *}

% Subcomponent 'THM head':

[THM head] f o n t : { b f }

Figure 2: Representative specs (pretending no de-
faults or inheritance) for a theorem element.

math formulas. We have also gone through some
rather extensive experiments with nonzero mathsur-
round.

The focus of this paper is on the fourth item:
How to make the process of creating and changing
publication designs easier. It seems best to begin
with an example, to serve as a point of reference for
later discussion. Figure 2 exhibits a representative
set of DBT specs for a theorem element. In practice
many of the style variables would be given default
values (such as 'mherit from context') by omitting the
corresponding lines.

For comparison Figure 1 shows a portion of a
document file and the output that would be produced
given the specs in Figure 2. The main point is that
the document file has only information content, not
visual formatting instructions, and all the formatting
specified in Figure 2 is applied automatically by the
software.

Style variables. Here are descriptions of the style
variables currently recognized by DBT for major text
elements. It should be fairly obvious that t h s is not a
universally sufficient set; rather, it is a set that seems
to be more or less sufficient for the relatively modest

plementation hasn't caught up yet; thus tend-
ing to disappear later when the implementation
does catch up)

typesize Self-explanatory
linespacing Self-explanatory
typeface Typeface name such as Garamond or

Palatino
font One of: rm, bf, it, sc, bit, . . . ; for simplicity each

style/weight/width combination is addressed
by a single distinct name.

wordspacing name of a function that sets all rele-
vant parameters

case upper, lower, normal
justification full, raggedright, raggedleft, centered,

paragraphshape indented, hangindented, . . .
interparspace extra amount, usually 0
breakbefore bad break or good break; the TEX range

0-10000 is collapsed to 0-10
spacebefore base-to-base
actionbefore inner hook
arrangement how subcomponents are combined
actionafter inner ending hook
breakafter cf breakbefore
spaceafter cf spacebefore
otherafter catch-all ending hook

The set of variables is extensible in the sense
that a new variable can be freely added for any
element, and the assignment will be stored in proper
form with the other specs for the element; it's just
that you would also have to add some internal
TEX processing to do the right thmg with the new
variable, in order for it to have any effect.

In addition to the above variables that are ap-
plied for elements within the text stream, there are a
number of global variables that address page layout
and other aspects. These are simply handled as TEX
integer or dimension variables. Some examples:

\typebl ockwi dth \l i nesperpage
\typeblockheight \trimwidth
\runheadspace \trirnhei ght
\runheadhei ght \headmargi n
\textwi d t h \guttermargi n
\textheight \dropfol i odepth

design needs of most AMS journals and books.
Features and Limitations of DBT

description mandatory; used in printing documen-
tation Concentration of visual design information in a sin-

placement floating or nonfloating gle location. All the visual design and layout as-

otherbefore catch-all hook (historically this has pects of a given publication are kept in a single file

been used for malung things work where the im-

362 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

with an extension of . pds (publication design spec-
ifications). Ths file is editable ASCII text, hke TEX
documents, with the same advantages and disadvan-
tages. An added interface layer with menus, context-
sensitive help, and tsk-tsk sound effects for bad de-
sign decisions would be nice but we haven't done
anything of that sort yet.

Minimized redundancy. Publications with similar
designs can share all the style variable settings that
coincide by putting them in a common file to be 'in-
herited' via TEX \input statements. This is irnpor-
tant for AMS use because we have several designs
that differ only in a few aspects. If each design were
kept as a separate full copy, maintenance would be
more difficult.

Separation of visual style concerns from informa-
tion transfer. A large part of some FOSIs that I've
seen is taken up with specifying how certain mforma-
tion should be moved around (such as running heads
or table-of-contents information). In DBT such infor-
mation transfer is kept separate from visual style
specs. In a . pds file there is nothing to say what in-
formation should go into the running head; only 'if
such-and-such information happens to turn up, here
is how to format it'.

Style template. The style of a given element is al-
most entirely specified in the element 'style tem-
plate'-nothing more than a list of assignment
statements for style variables - and is applied by a
generic element-printing function. Little remains to
be done by TEX macro writing.

A small number of generic element-printing func-
tions. Essentially four generic element-printing
functions are required-one for major elements
(slices of the vertical text column), one for floating
elements, one for displayed equations, and one for
minor elements (distinct logical entities w i t h para-
graph text).

Predefined functions for subordinate typesetting
tasks. Some of the variables in the element style
templates are intended to take on function values:
justification (ragged right, ragged center, full jus-
tification, etc.), paragraph shape (indented, non-
indented, hang-indented, etc.), word spacing (de-
fault, 'french', loose). The idea is that a new function
should be created whenever existing functions fail to
provide the desired style in a form that can be easily
called in an element template.

Compact notation for subcomponent handling.
The 'arrangement' variable in the element style tem-
plate is a special variable whose value is a description
of the subcomponents (optional or mandatory) that
an element may have, and how they should be com-
bined. The notation is effective for concisely describ-

ing what is to happen when optional subcomponents
are absent.

For the THM element in Figure 2, the arrange-
ment is

R head * . {\enskip} body *
Each arrangement has seven parts. The first part
is the arrangement name. R in t h s case is short-
hand for 'run-in'; there are also H for horizontal
and V for vertical. Less common arrangements have
fully spelled out names. The second and sixth parts
are the names of the subcomponents that are to be
combined - here, head and body. The fourth and
fifth parts are in-between material, loosely speaking
punctuation and space, respectively. If one of the
two components in an arrangement is optional,
and absent in a particular instance, the in-between
material is omitted.

Arrangements can be combined recursively. The
third and seventh parts of an arrangement are slots
for fitting in subordinate arrangements. A subor-
dinate arrangement is enclosed in braces so that it
can be read as a single macro argument by various
arrangement-scanning functions. For example, sup-
pose that we wished to allow an optional note com-
ponent in the THM head, like the [note] option of
WX's theorem environments. The arrangement for
THM would be expanded by replacing the * after
head with a second-level arrangement:

R head {H mainhead * - {\ } note *}
. {\enskip} body *

A hyphen for part four or five means 'null', in t h s
case 'no in-between punctuation'.

Thus an arrangement is a sort of binary tree
of subcomponents. Although restricting to binary
combinations requires thinking up more component
names than might otherwise be the case (viz the in-
troduction of 'mainhead' above), higher-order com-
binations are unable to handle an optional middle
component without ambiguity. Consider rewriting
the above example as a three-way combination:

head R - {\ } note H . {\enskip} body

If the note is omitted, it's not clear whch pieces of
the in-between material should be used between the
head and the body. Simple strategies such as 'use
the first set of in-between material and ignore the
second' (or vice versa) proved to be unreliable when
I tried them with a range of real examples.

One current limitation of the arrangement no-
tation has to do with list-like arrangements, where
an element consists of an indeterminate number of
identical subcomponents. An example might be a list
of author names and addresses. Such arrangements
are sufficiently binary in nature to have no ambiguity
problems, but I'm not sure how to extend the current
notation to handle them.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

Arbitrary number of subcomponents for elements.
Elements can be broken down as far as necessary to
yield the desired level of independent control over
fonts and other aspects of style for each component.
A typical THM arrangement is slightly more elaborate
than the one in the example given earlier, treating
the word 'Theorem' and the number as separate
components. The most complex element I've had to
deal with so far consisted of four arrangements eight
components.

By suitable combination of simpler arrange-
ments, the design for a given element can become an
arbitrarily complex two-dimensional structure.

Inheritance. If one element has nearly the same
style as another, there is a way in a DBT template
to specify that the element is 'based on' the other,
and reset only the style variables that have differing
values.

Variable clustering. Instead of having separate
entries in the element specs template for every
variable provided by TEX, and every variable added
by the macro package, some of the entries reflect
clusters of related variables. To get ragged-right you
need just one line:

[XX] j u s t i f i c a t i o n : {\raggedright{3Opc}}

instead of many lines:

[XXI hsi ze: {30pc}
[XXlleftskip:{Opt}
[XXlrightskip:{Opt plus3em)
[XX]parfillskip:{Opt p l u s l f i l }
[XXlexhyphenpenal t y : {3000}
CXXl hyphenpenal t y : {9000}
[XXI pre to l erance : {ZOO}
[XX] to1 erance: {400)

I've vacillated about leaving \hsize as a separate
parameter, perhaps under a different name. The
reasons for folding it into the justification parameter
are: (a) this corresponds well to the way justification
is specified in traditional book designs; and (b) there
is a check in the internal processing of the generic
element-printing functions to see if a new value for
justification is the same as the previous value; if so,
the resetting operation can be slupped. If \hsize
were a separate parameter, the check would have to
test two variables instead of one to decide whether
the skipping can be done.

Some aspects of style templates remain T~Xnical.
Although the syntax of element style templates has
been intentionally deT~Xified, towards the goal of
making them accessible to nonT~Xnicians, the ex-
ample in Figure 2 exhibits some backslashes, curly
braces, and (gasp) even @ characters. The main rea-
son for this was convenience during the development
phase. Further improvements to the syntax would
not be that difficult but have not yet reached hlgh
enough priority.

There were two reasons for allowing private
control sequences: first, it leaves open the door to
enter arbitrary TEX code in the value of a variable
(though in our experience so far this has not been
needed as much as I expected); and second, it
avoids name clashes for things hke \goodbreak and
\uppercase that seemed natural for certain values.

Another significant practical constraint was
parsability. Currently all design specs are parsed and
assimilated at run-time. Though it may not be ob-
vious at first sight, behnd the syntax shown in Fig-
ure 2 lie many rejected variations that would have
made it much more difficult to write the routines that
scan component names and variable values. For ex-
ample, use of anything other than curly braces to de-
limit variable values would lead to various problems:
if end-of-line is used to mark the end of the value,
then multiline values become difficult to deal with; if
parentheses are used as delimiters, then it becomes
difficult to use parentheses in a variable's value; and
SO on.

Printing out written specs from the . pds file. The
organized structure of element arrangements allows
them to be traversed by a suitable function in order
to print out a transcription (which comes closer
than you might expect to traditional specs written
by a human designer). Vertical spacing values are
not only entered in base-to-base form, but also
stored that way, so printing out the values does not
require backward conversion. The application of the
specified vertical spacing is highly accurate by virtue
of complicated internal code, which is beyond the
scope of this paper.

Black-box math. Math style is dealt with in a
more-or-less black-box manner: Here is a whole
math setup, take it or leave it. As a matter of
fact, the knowledge necessary for high-quality math
typesetting has traditionally resided more in the
hands of compositors than in the hands of book
designers, so the current sketchy treatment of math
style in . pds files is wholly typical. Although it would
be good to open up math style for easy access, the
necessary work hasn't been attempted yet. Note that
the variables needed to control math style are almost
completely different from the variables needed for
normal text elements.

Memory hogging. Compared to other macro pack-
ages DBT is a memory hog, easily going over 64K in
TEX'S main memory category before even starting the
first page, not to mention loadmg any hefty exten-
sion modules like a table package. And this is after
moving error message and help message texts out
of macro storage onto disk. In general I followed
the phdosophy of the authors of the X window sys-
tem: Write the software the way you think it ought
to be done, ignoring the fact that available computer

3 64 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

resources are strained to support it, and hope that copy of a document, you would probably want the
the resources will catch up by the time the software section head spacing to change proportionally. This
reaches maturity. Some further routine optimiza- won't happen if the spacing value was fully evaluated
tions can still be done but it would be premature to at the time of first assignment. Compare the well-
do them now.3 known distinction in computer science between pass-

Slowness. And it runs slowly, because it's trying
to be so clever and do eve ry thg the right way,
rather than the expedient way. For example, the
reason that . pds files are scanned at run-time rather
than precompiled, is that this puts a part of the
maintenance burden where it ought to be - on the
computer, rather than on the persons who set up
design specs; an extra compilation step would make
development and testing more onerous. Rumors that
we would get a super-fast new machine on which
to run in-house TEX production have not yet been
substantiated by putting it in our hands. At the
moment, running on a not-too-shabby two-year-old
Unix workstation (circa 20 Specmarks, 30 MIPS), a
typical book run of around 300 pages may take
more than two hours, as opposed to thirty minutes
or so with the macro package that preceded DBT.

(That includes some non-TEX overhead such as dvi ps
processing, and with the workstation simultaneously
sewing other processes.)

Various Complications

In this section I want to describe some of the tech-
nical complications and problems that have crossed
my path. A few of them are TEX-specific, whlle others
are relevant for any system that seeks to automate
the application of document designs.

(1) Intent: Style variable values should be care-
fully specified to reflect the designer's intent, as
much as possible, rather than the results of that in-
tent. For example, suppose that the designer cal-
culates the point values for space around a section
head to make the head occupy exactly two lines of
space at 12pt linespacing, setting the spacebefore
and spaceaf te r variables to 21pt and 15pt respec-
tively. If the linespacing subsequently changes to
13pt, the values of spacebefore and spaceaf te r
need to be updated by hand, whereas if they had been
set to 1 . 7 5 \ 1 i nespaci ng and 1 .25 \1 i nespaci ng
then the change from 12pt to 13pt could automat-
ically propagate as desired.

(2) when to evaluate: It's not always desirable
to fully evaluate the value of a variable at the time
of assignment. Immediate full evaluation makes it
impossible for a dependent variable to keep in sync
with another variable as it changes. For example, if
the space above a section head is specified in relation
to linespacing, and the normal linespacing value is
overridden later to produce a double-spaced proof

"Premature optimization is the root of all evil."
Donald Knuth, t e x . web (version 3.14, 1991, 5986).

ing function arguments by value or by reference.
(3) Inheritance: When specifying the style of

two similar elements, the one with a more complex
subcomponent structure should be based on the one
with a simpler structure, rather than vice versa. This
is almost self-evident but I once had to set up four
or five unnumbered footnote-type elements, and in
my first attempt I thoughtlessly spec'd the normal
numbered footnote first and based the unnumbered
elements on that, before realizing it ought to be done
the other way around.

(4) Inheritance: The question of immediate ver-
sus delayed evaluation for individual style variables
applies also to collections of variables, when a major
element is specified to be based on another. If the
similarity of style is coincidental rather than due to
a logical relationship between the two elements, then
immediate evaluation would probably be desired.

(5) Documents that are nominally supposed to
have the same documentstyle, in practice often don't.
For a book series, the primary design for the series is
typically subject to &or mddificaiions in individual
volumes. For example, in one volume the style of the
footnote marks was changed because they too closely
resembled some elements of the math formulas in
the volume.

Similarly certain kinds of style variations are
routinely permitted between different articles w i t h
a journal issue. In an article where a bullet is used
as a math symbol, it would probably be a good idea to
override a standard list style that marks unnumbered
list items with bullets.

Different authors prefer dfferent numbering
schemes, and because the numbering scheme of a
document is closely bound up with the logical struc-
ture of the document, we routinely allow style for
theorem heads and section heads to vary (w i t h cer-
tain standard limits) to better suit the numbering
scheme, rather than rigidly enforce a single nurnber-
ing scheme. Here are three of the most common vari-
ations in theorem numbering:

Theorem 1.1. Normal.

1.2. Theorem. Swapped numbers.

1.3. Numbers only.

Numbers are typically swapped to the front when
there are many numbered elements and different
element types share the same numbering sequence.
The font and intervening space then change for
design reasons. All of the variations can be produced
from identical markup by style override statements
at the beginning of the document.

TUGboar, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

(6) In fact, different articles in a journal fre-
quently differ not only in style aspects but in the very
elements that they contain. In a recent example, an
article contained two different h d s of proofs in-
stead of the normal one h d : proofs given in full,
and brief sketches that left the detiuls to be filled in
by the reader. The two kinds were marked by two
chfferent QED symbols.

As anticipating all possible elements and forbid-
ding unknown elements are equally impractical, the
solution seems to be to make it easy to declare a new
element and its associated style, and put those decla-
rations into the individual document where needed.

(7) Arrangements in DBT are applied only to
subcomponents within a single element. But docu-
ments may also contain sequences of major elements
where some of the elements themselves are optional,
which leads to the same sort of potential ambiguities
as with subcomponent arrangements. Suppose the
opening of an article consists of title, author, dedi-
cation, key words, subject classification, abstract, ta-
ble of contents, and finally, main text. And suppose
that the dedication. kev words, abstract and table of , ,

contents are optional. It gets t o be rather tricky to
specify the vertical spacing to be used in all possible
combinations. In DBT this is handled mainly by appli-
cation of a single vertical spacing rule: when adding
a major element to the page, compare the space af-
ter the preceding element and the space before the
new element and use whchever is larger. Practically
speaking this seems to suffice most of the time, if
care is takenin choosing where the various space val-
ues are specified (e.g., for a given set of space values
it may work out better to leave the spaceaf te r vari-
able for the author element at zero and rely only on
the spacebefore values of all the components that
could possibly follow after the author). There is a
rudimentary mechanism in DBT for specifying inter-
element space depending on the type of the two ele-
ments, but it hasn't been needed much.

(8) Communication between information-hand-
ling and design-handling functions: In DBT a TEX
command such as \thm is used in a document to col-
lect the contents of a theorem. \thm sends this data
to a generic element-printing function that takes the
given pieces of information and feeds them into the
declared arrangement for theorem elements. Thus
the definition of \thm is interdependent with the ar-
rangement. Ideally the definition of \thm could be
derived in some semi-automatic way from the ar-
rangement structure but there are many complica-
tions, so a t present DBT doesn't attempt to be too
clever; someone has to explicitly define all the com-
ponents that \thm should look for, and the docu-
ment syntax to expect. There are high-level syntax-
related functions that make this task fairly easy, but
the person doing the defining has to actually look at

the declared arrangement when setting up the paral-
lel structure in the \ t h m command, rather than hav-
ing any of the transfer done automatically.

(9) Information content for the components of
an element can be provided either explicitly in the
document or by giving a default value in the element
template. For example, a proof head will normally be
given a default value of 'Proof' in t h s manner:

[PRF] arrangement : C%
R head * . {\enskip} body *I

[PRF] head : {Proof}

In DBT there is a mechanism for optional substitution
of alternate text for such a component, for selected
instances of the parent element in a document. This
is needed occasionally to get an alternative proof
head such as 'Sketch of the Proof'.

It's not clear whether default information con-
tent specifications like t h s should be lumped to-
gether with style specifications. Is the material con-
tent or style? I would say content, but then con-
sider the following ways of marlung the beginning of
a proof:

1. 'Proof' heading:

. . . preceding text.
Proof. Text of the proof

2. Dingbat:

. . . preceding text.
7 Text of the proof.. . .

3. Inline horizontal rule:

. . .preceding text.
- Text of the proof.. . .

4. Full-measure rule and whitespace:

. . . preceding text.

Text of the proof . .
5 . White space only:

. . .preceding text.

Text of the proof
At what point does the material that marks the
beginning of the proof stop being content and start
being style?

(10) In math formulas font changes are mathe-
matically significant. Suppose that an author uses
bold and non-bold versions of O (Greek Theta) in a
paper for different mathematical entities. Consider
what happens in a bold section head:

4. Let's talk about O

The reader can't tell which version of O was intended.
In more complicated examples serious garbling of
the formula's meaning can occur. To prevent such
garbling the AMS policy is to never vary the fonts in
a math formula for purely stylistic reasons. (As a
tangential benefit, this prevents practical problems
with availability of bold or sans serif math symbols.)

3 66 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Design by Template in a Production Macro Package

(1 1) In traditional composition, certain minor
points of style cut across the logical structure of the
text and are therefore hard to handle by automated
typesetting. For example, if the declared font for a
theorem head is bold, then the logical thing to do
for all in-between material within the theorem head,
such as punctuation, would be to use bold. But it may
be that one subcomponent w i t h a theorem head
(e.g. the number in the swapped-numbers example
above) is not to be printed in bold. The result would
be a bold period after a nonbold number, which tends
to look bad:

(14) 'Above display short space'. There is a
mechanism built into TEX for automatically reducing
the vertical space around a displayed equation if the
horizontal distance from the end of the preceding
text line is large enough.

Here we are testing a short Contrasting to this test of the

skip. notshort skip.
BI - - -

A C - U A = B + ----
Note the space below. E

Note the space below.

How should this design requirement be specified in

1.2. Theorem. Swapped numbers. a style template?
(1 5) Side-by-side figures: Proper specification of

(Look closely at the periods.) A bold period also looks the surrounding space is a little tricky,
odd following a math formula at the end of a run-in First try: put all the avadable space between the
section head, since math formulas are not printed in G-.,.no

11gUlc>.
bold in accordance with the AMS policy mentioned I I

above. To prevent such distracting oddities, most
manuals of composition style say that punctuation
should take on the weight (and sometimes slant, if
applicable) of the preceding text. The DBT system
takes care of ths, but not without effort."

There is also the question, should the period
be considered in-between material, or an interior
part of the precedmg component? I tend to believe
treating it as in-between material is better, but the
weight mismatch problem is one example of the
complications lurking behind that approach.

(12) It's unclear how best to specify vertical
spacing around displayed equations. Specifying it in
base-to-base terms leaves open, for many equations,
a question 'The base of what??'. And the reasonably
satisfactory answer 'the base of the hghest and
lowest full-size entities in the equation, disregarding
delirmters' is rather difficult to implement. Not
to mention the fact that egregiously large sub or
superscripts can still make a mockery of the intended
spacing. The alternative of specifying the space
around equations as visual space to the topmost and
bottom-most points of the equation doesn't always
work perfectly either. The mechanism budt into TEX
is a sort of composite method that uses base-to-base
spacing until the equation contents get too tall, then
switch to visual spacing. Although thls works pretty
well, it often results in a discrepancy of two or three
points in the spacing above and below equations on
the same page.

(13) In the presence of running heads, accurate
calculation of type block height and text block height
is not easy. Doing it properly requires knowing the
alphabet height of the fonts used for the running
head and the main text. Then placing the main text
and the running head properly within the defined
heights requires some careful work.

% numeric code for the most recently used font
is recorded in \spacefactor for later reference.

Second try: Divide the avadable space into four
parts, put two parts in the middle, and one on each
side.

But when the figures are close to half of the
available width, the results can be poor:

Thad try: Specify a minimum space between the
figures, then divide up the space remaining into four
equally distributed parts.

Second
figure

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Michael Downes

(16) QED symbol placement: The end of a
mathematical proof is frequently marked by the
letters 'Q.E.D.' or some sort of dingbat, as an aid
to the reader. As the QED symbol is consistently
applied to all proofs in a document, it seems best
to treat it as an aspect of the proof style and
add it automatically, rather than requiring it to
be included in the content portion of the proof.
To avoid wasting vertical space, the QED symbol
is usually fitted into the bottom right corner of
the last paragraph. But then if the proof ends
with a displayed equation, or anything other than
a plain paragraph, the formatting of the last text
in the proof will probably be fmshed before the
\endproof command kicks into action; retrofitting
the QED symbol into the preceding text becomes a
real problem.

(17) Omitting redundant punctuation: e.g., a
period after a run-in section head that ends with
a question mark; compare the omission of the
sentence-ending period when a sentence ends with
etc. (This is a problem in documents where sentences
are marked up with \sentence . . . \endsentence.)

(18) Running two different elements together.
If a numbered list falls at the very beginning of
a headed element such as a proof, it is common
practice to run the first list item in on the same line
as the proof head (saves vertical space, thus tends
to savhpaper = cost = final cost to the reader). But
the rule for deciding when to allow such running in
is difficult to express in a way that can be automated.

(19) How to evaluate: For some style variables
it is occasionally desirable to give a value in terms of
other variables. But evaluation in TEX is problematic
for any arithmetic expression more complicated than
a factor multiplying a register. You cannot write

[THMllinespacing: {\curr typesize + 2pt)

The TEX way of writing such an assignment is

\l i nespaci ng = \curr typesize
\advance\l i nespaci ng 2pt

This can't easily be jammed into the value slot of a
template entry. It would be possible to apply some
sort of arithmetic processing when reading the value
of a variable, but designing a syntax suitable for TEX
would not be particularly easy.

(20) Case changing. TEX'S \uppercase or
\lowercase cannot be applied indscriminately
to an element component if the component might
contain (for example) a math formula. Also, in AMS
editorial practice the uppercase form of McLeod is
McLEOD, not MCLEOD. For related TjXIIical reasons,
case changes in DBT cannot be applied to a composite
component, only to 'atomic' components.

It would be better if case changes were combined
with font changes - in other words, if uppercasing
were done by switching to an uppercase font instead
of by applying \uppercase. This would automati-

cally avoid problems with embedded math formulas,
for example. But the implementation details would
be a bit thorny. You can make a virtual font that sub-
stitutes capital letters for the lowercase letters, but it
seems sort of silly to create a separate font to access
characters that already exist in the current font; so
perhaps some sort of output encoding change would
be better. But TEX 3.x doesn't provide that capability.

Conclusion

Most of the analysis in DBT for breaking down style
specifications into suitable variables is straightfor-
ward. A few aspects, however - notably the 'arrange-
ment' concept - have little precedent that I know of
and have not had sufficient testing and analysis to
raise their status beyond 'experimental'. The imple-
mentation in TEX of DBT approaches or surpasses
some of the current typical limits on TEX memory re-
sources and processing speed. Nonetheless, the sys-
tem is currently in use in-house at the AMS and is do-
ing a pretty good job of delivering the desired easy
maintenance of our publication designs. The possi-
bility of wider release at some point is not out of the
question, but the amount of work necessary to pol-
ish it up for such release (including some optimiza-
tion to decrease the strain on TEX memory capacities)
would be rather large.

References

Anagnostopoulos, Paul. "ZZTEX: A macro package
for books." 7UGboat 13 (4), pages 497-504,
1992.

Bringhurst, Robert. Elements of Typographic Style.
Hartley & Marks, Point Roberts, Washington,
USA, 1992.

Brown, P.J. "Using logical objects to control hy-
pertext appearance." Electronic Publishing-
Origination, Dissemination and Design 4 (21,

pages 109-118, 1991.

Dobrowolslu, Andrew. "Typesetting SGML docu-
ments using TEX." 7UGboat 12 (3), pages 409-
414, 1991.

Eijkhout, Victor. "Just give me a Lollipop (It
makes my heart go giddy-up)." TUGboat 13

(3), pages 341-346, 1992.

Eijkhout, Victor and Andries Lenstra. "The document
style designer as a separate entity." TUGboat 12
(I), pages 31-34, 1991.

Hansen, Bo Stig. "A function-based formatting
model." E1ectrom.c Publishing - Origination,
Dissemination and Design 3 (I), pages 3-28,
1990.

Livengood, William P. The Maple Press Company
Style Book. Maple Press Co., York, Pennsylvania,
USA, 1931.

368 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

