TUGboat, Volume 14 (1993), No. 4

4 Limitations of bibview

bibview is intended for small personal databases.
There may be problems with databases consisting
of more than 1000 entries.

It is desirable to search in more than one
database.

The consistency check should be more sophisti-
cated and, for example, look for duplicate entries.

The algorithm for key generation is fixed. The
user should be able to define his own method for key
generation.

Comments in BIBTEX databases are accepted
but ignored. They will be lost in the output pro-
duced by bibview.

5 How to Obtain bibview

The source for bibview can be obtained via anony-
mous ftp from ftp.informatik.tu-muenchen.de
{current Internet ad-
dress: 131.159.0.110) as /pub/comp/typesetting/
tex/bibview-1.5.tar.Z. It must be transferred in
‘binary’ mode.

Acknowledgements

Holger Martin and Peter M. Urban implemented an
earlier version of bibview. Prof. J. Schlichter and my
colleagues helped to improve the tool.

o Armin Liebl
Technische Universitdat Miinchen
Fakultat fiir Informatik
Arcisstr. 21
80290 Miinchen
liebla@informatik.tu-muenchen.de

395
Bibliography Prettyprinting and Syntax
Checking
Nelson H. F. Beebe

Contents
1 Introduction 395
2 BIBTEX needs improvement 396
3 Run-time options 397
4 Prettyprinting 399
5 Pattern matching and initialization files 400
6 Lexical analysis 403
7 Portability 404
8 ScrIBE bibliography format 405
9 Recommendations for BIBTEX design 405
10 A lexical grammar for BIBTEX 406
11 A parsing grammar for BIBTEX 409
12 Software availability 414

References 414

Index 415
List of Tables
1 Sample bibclean initialization file. 400
2 Escape sequences in quoted strings. 401
3 Initialization file pattern characters. 401

1 Introduction

BIBTEX [18, Appendix B| is a convenient tool for
solving the vexing issue of bibliography format-
ting. The user identifies fields of bibliography en-
tries via field/value pairs and provides a unique ci-
tation key and a document type for each entry. A
simple string substitution facility makes it easy to
reuse frequently-occurring strings. A typical exam-
ple looks like this:

@String{pub-AW =
"Ad{\-d}i{\-s}ton-Wes{\-1}ey"}

@Book{Lamport :LDP85,

author = "Leslie Lamport",

title = "{\LaTeX}---A Document
Preparation System---User’s
Guide and Reference Manual",

publisher = pub-AW,

year = "1985",

ISBN = "0-201-15790-X",

}

The TEX file contains citations of the form
\cite{Lamport:LDP85}, together with a \bibli-
ographystyle command to choose a citation and
bibliography style, and a \bibliography command
to specify which BIBTEX files are to be used. TEX
records this information in an auxiliary file.

396

A subsequent BIBTEX job step reads this auxil-
iary file, extracts the requested bibliographic entries
from the specified BIBTEX files, and outputs the en-
tries into a bibliography file formatted according to
the specified style. Several dozen such styles are cur-
rently available to help cope with the bizarre vari-
ations in bibliography formats that publishers have
invented.

In a second TEX step, the \cite commands are
not correctly expandable until the \bibliography
command is processed and the bibliography file out-
put by BIBTEX is read. However, at that point, the
desired form of the citations is finally known, and
at the end of the job, an updated auxiliary file is
written.

A third TEX step finally has the necessary infor-
mation from the auxiliary file and the bibliography
file to correctly typeset the \cite commands and
the bibliography in the specified style.

With the GNU Emacs text editor [7, 27], power-
ful BIBTEX editing support makes it simple to gen-
erate bibliography entry descriptions via templates
that can be inserted with a couple of keystrokes,
or on workstations, selected from a pop-up menu.
This editor is freely available on UNIX, VAX VMS,
and the larger members of the IBM PC family under
PC-DOS.

The major benefits of using BIBTEX are the po-
tential for data reuse, the separation of form and
content (like the descriptive markup of IATEX and
SGMLI[6, 31]), and the many stylistic variants of
the typeset bibliography. During the preparation
of this article, a scan of our Mathematics Depart-
ment workstation file system located about 14 000
TEX files, and 445 BIBTEX files. The latter contained
about 870 000 lines and almost 94 000 bibliography
entries. These files form a valuable resource that au-
thors and researchers can use to track and properly
cite literature in their publications.

During my term as TUG President, I initiated
a project to collect BIBTEX styles and bibliography
data base files of material related to TEX and its
uses, and electronic document production and ty-
pography in general. This dynamic collection also
covers a few journals, including more than 1000 en-
tries for TUGboat. A snapshot of part of the col-
lection was published in the 1991 TUG Resource Di-
rectory [4, 5].

One drawback of BIBTEX is that errors in a bib-
liography file, such as unmatched quotation marks
around a value string, can sometimes be hard to
locate, because the current version of the program
raises an error at the end of a scan when internal ta-
bles overflow after gobbling several thousand char-

TUGboat, Volume 14 (1993), No. 4

acters of input. The result is that the error location
is completely bogus, and actually lies much earlier
in the file. We can hope that this serious deficiency
will be remedied in the final version of BIBTEX, 1.0,
which is expected to appear when the INTEX 3.0 de-
velopment is completed.

Another drawback is that such bibliography
files are normally prepared by human typists, and
consequently there are formatting variations that
reduce readability, and inconsistencies that persist
into the final typeset bibliography. Some examples
of such inconsistencies are variations in naming of
publishers and journals, spacing around author and
editor initials, and variations in letter case in titles.
In addition, there are usually numerous typograph-
ical errors of omission, doubling, spelling, transcrip-
tion, translation, and transposition.

In the fall of 1990, faced with a growing collec-
tion of BIBTEX files, I set out to write a software
tool to deal with these problems. This program is
called bibclean. It is a syntax checker, portabil-
ity verifier, and prettyprinter, and was made freely
available in 1991. In the fall of 1992, after consider-
able experience with the first version, I embarked on
a set of enhancements that produced major version
2.0, and the purpose of this paper is to describe the
new version, and to widely advertise its existence to
the TEX community.

2 BibTEX needs improvement

BIBTEX, like TEX, assumes that its input is pre-
pared correctly, and works best when that is the
case. Both programs attempt to recover from er-
rors, but that recovery may be unsuccessful, and er-
rors may be detected only after lengthy processing.
In neither case is the output of these programs suit-
able for input to them. That is, their knowledge of
how their input streams are to be parsed is available
only to them, and cannot be applied independently
and used by other software. Both programs have a
hazily-defined input syntax, and TEX's is extensible,
making it even harder to give a precise description
to the user.

The trend of compiler technology development
of the last two decades, largely on UNIX systems, has
been to separate the compilation task into several
steps.

The first is generally called lezical analysis, or
lexing. It breaks the input stream up into identifi-
able tokens that can be represented by small integer
constants and constant strings.

The second step is called parsing, which in-
volves the verification that the tokens streaming

TUGDboat, Volume 14 (1993), No. 4

from the lexer conform to the grammatical require-
ments of the language, that is, that they make sense.

As parsing proceeds, an intermediate represen-
tation is prepared that is suitable for the third step,
namely, code generation or interpretation.

This division into subtasks diminishes the com-
plexity of writing a compiler, reduces its memory re-
quirements, and importantly, partitions the job into
two parts: a language-dependent, but architecture-
independent, part consisting of lexing and pars-
ing, and a language-independent, but architecture-
dependent, part where code is generated or inter-
preted.

This makes it possible to write a front end for
each language, and a back end for each architec-
ture, and by combining them, obtain compilers for
all languages and all architectures. The most suc-
cessful example of this approach at present is al-
most certainly the Free Software Foundation’s GNU
Project compilers, which support all common com-
puter architectures with the back ends, and C, C++,
and Objective C with the front ends. Additional
front ends for several other popular languages are in
preparation.

When a lexer is available as a separate program,
its output can be conveniently used by other pro-
grams for tasks such as database lookup, floating-
point precision conversion, language translation, lin-
guistic analysis, portability verification, prettyprint-
ing, and checking of grammar, syntax, and spelling.

In response to a command-line request, bib-
clean will function as a lexer instead of as a pret-
typrinter. An example is given later in Section 6.

3 Run-time options

On several operating systems, bibclean is run by a
command of the form

bibclean [options] bibfile(s) >newfile

One or more bibliography files can be specified; if
none are given, input is taken from the standard
input stream. A specific example is:

bibclean -no-fix-name mybib.bib >mybib.new

Command-line switches may be abbreviated to
a unique leading prefix, and letter case is not sig-
nificant. All options are parsed before any input
bibliography files are read, no matter what their or-
der on the command line. Options that correspond
to a yes/no setting of a flag have a form with a pre-
fix no- to set the flag to no. For such options, the
last setting determines the flag value used. This is
significant when options are also specified in initial-
ization files (see Section 5).

397

On VAX VMS and IBM PC-DOS, the leading hy-
phen on option names may be replaced by a slash;
however, the hyphen option prefix is always recog-
nized.

-—author Display an author credit on the standard
error unit, stderr. Sometimes an executable
program is separated from its documentation
and source code; this option provides a way to
recover from that.

-error-log filename Redirect stderr to the in-
dicated file, which will then contain all of the
error and warning messages. This option is pro-
vided for those systems that have difficulty re-
directing stderr.

-help or -? Display a help message on stderr,
giving a sample command usage, and option de-
scriptions similar to the ones here.

-init-file filename Provide an explicit value
pattern initialization file. It will be processed
after any system-wide and job-wide initializa-
tion files found on the PATH (for VAX VMS,
SYS$SYSTEM) and BIBINPUTS search paths, re-
spectively, and may override them. It in turn
may be overridden by a subsequent file-specific
initialization file. The initialization file name
can be changed at compile time, or at run time
through a setting of the environment variable
BIBCLEANINI, but defaults to .bibcleanrc on
UNIX, and to bibclean. ini elsewhere. For fur-
ther details, see Section 5.

-max-width nnn Normally, bibclean limits out-
put line widths to 72 characters, and in the
interests of consistency, that value should not
be changed. Occasionally, special-purpose ap-
plications may require different maximum line
widths, so this option provides that capability.
The number following the option name can be
specified in decimal, octal (starting with 0), or
hexadecimal (starting with 0x). A zero or neg-
ative value is interpreted to mean unlimited, so
-max-width O can be used to ensure that each
field /value pair appears on a single line.

When -no-prettyprint requests bibclean
to act as a lexical analyzer, the default line
width is unlimited, unless overridden by this
option.

When bibclean is prettyprinting, line wrap-
ping will be done only at a space. Conse-
quently, an extremely long non-blank charac-
ter sequence may result in the output exceed-
ing the requested line width. Such sequences
are extremely unlikely to occur, at least in
English-language text, since even the 45-letter

398

-[no-Jcheck-values

-[no-]delete-empty-values

-[no-]file-position

giant [16, p. 451] pneumonoultramicroscopicsil-
icovolcanoconiosis will fit in bibclean’s stan-
dard 72-character output line, and so will 58-
letter Welsh city names.

When bibclean is lexing, line wrapping is
done by inserting a backslash-newline pair when
the specified maximum is reached, so no line
length will ever exceed the maximum.

With the positive form,
apply heuristic pattern matching to field val-
ues in order to detect possible errors (e.g. year
= "192" instead of year = "1992"), and issue
warnings when unexpected patterns are found.

This checking is usually beneficial, but if it
produces too many bogus warnings for a par-
ticular bibliography file, you can disable it with
the negative form of this option. Default: yes.
With the positive
form, remove all field /value pairs for which the
value is an empty string. This is helpful in
cleaning up bibliographies generated from text
editor templates. Compare this option with -
[no-]lremove-0PT-prefixes described below.
Default: no.

With the positive form,
give detailed file position information in warn-
ing and error messages. Default: no.

- [no-]fix-font-changes With the positive form,

supply an additional brace level around font
changes in titles to protect against downcasing
by some BIBTEX styles. Font changes that al-
ready have more than one level of braces are
not modified.

For example, if a title contains the Latin
phrase {\em Dictyostelium Discoideum} or
{\em {D}ictyostelium {D}iscoideum}, then
downcasing will incorrectly convert the phrase
to lower-case letters. Most BIBTEX wusers
are surprised that bracing the initial let-
ters does not prevent the downcase action.
The correct coding is {{\em Dictyostelium
Discoideum}}. However, there are also le-
gitimate cases where an extra level of brac-
ing wrongly protects from downcasing. Con-
sequently, bibclean will normally not supply
an extra level of braces, but if you have a bib-
liography where the extra braces are routinely
missing, you can use this option to supply them.

If you think that you need this option, it
is strongly recommended that you apply bib-
clean to your bibliography file with and with-
out —fix-font-changes, then compare the two
output files to ensure that extra braces are not

-[no-Jfix-initials

-[no-]par-breaks

-[no-]prettyprint

-[no-]print-patterns

- [no-]remove-0PT-prefixes

TUGboat, Volume 14 (1993), No. 4

being supplied in titles where they should not
be present. You will have to decide which of
the two output files is the better choice, then
repair the incorrect title bracing by hand.
Since font changes in titles are uncommon,
except for cases of the type which this option
is designed to correct, it should do more good
than harm. Default: no.
With the positive form, in-
sert a space after a period following author ini-
tials. Default: yes.

-[no-]fix-names With the positive form, reorder

author and editor name lists to remove commas
at brace level zero, placing first names or initials
before last names. Default: yes.

With the negative form, a
paragraph break (either a formfeed, or a line
containing only spaces) is not permitted in
value strings, or between field/value pairs. This
may be useful to quickly trap runaway strings
arising from mismatched delimiters. Default:
yes.

Normally, bibclean func-
tions as a prettyprinter. However, with the neg-
ative form of this option, it acts as a lexical
analyzer instead, producing a stream of lexical
tokens. See Section 6 for further details. De-
fault: yes.

With the positive form,
print the value patterns read from initialization
files as they are added to internal tables. Use
this option to check newly-added patterns, or
to see what patterns are being used.

When bibclean is compiled with native
pattern-matching code (the default), these pat-
terns are the ones that will be used in checking
value strings for valid syntax, and all of them
are specified in initialization files, rather than
hard-coded into the program. For further de-
tails, see Section 5. Default: no.

-[no-]read-init-files With the negative form,

suppress loading of system-, user-, and file-
specific initialization files. Initializations will
come only from those files explicitly given by
-init-file filename options. Default: yes.
With the positive
form, remove the OPT prefix from each field
name where the corresponding value is not an
empty string. The prefix OPT must be entirely
in upper-case to be recognized.

TUGboat, Volume 14 (1993), No. 4

This option is for bibliographies generated
with the help of the GNU Emacs BIBTEX edit-
ing support, which generates templates with op-
tional fields identified by the OPT prefix. Al-
though the function M-x bibtex-remove-0PT
normally bound to the keystrokes C-c C-o does
the job, users often forget, with the result
that BIBTEX does not recognize the field name,
and ignores the value string. Compare this
option with -[no-]Jdelete-empty-values de-
scribed above. Default: no.

- [no-lscribe With the positive form, accept
input syntax conforming to the SCRIBE docu-
ment system. The output will be converted to
conform to BIRTEX syntax. See Section 8 for
further details. Default: no.

-[no-Jtrace-file-opening With the positive
form, record in the error log file the names of
all files which bibclean attempts to open. Use
this option to identify where initialization files
are located. Default: no.

-[no-]Jwarnings With the positive form, allow
all warning messages. The negative form is not
recommended since it may mask problems that
should be repaired. Default: yes.

-version Display the program version number on
stderr. This will also include an indication of
who compiled the program, the host name on
which it was compiled, the time of compilation,
and the type of string-value matching code se-
lected, when that information is available to the
compiler.

4 Prettyprinting

A prettyprinter for any language must be able to
deal with more than just those files that strictly con-
form to the language grammar. For programming
languages, most compilers implement language ex-
tensions that prettyprinters must recognize and try
to deal with gracefully. bibclean recognizes two
such input languages: BIBTEX and SCRIBE.

Ideally, a prettyprinter should be able to pro-
duce output even in the presence of input errors, dis-
playing it in such a way as to make the location of
the errors more evident. bibclean provides detailed
error and warning messages to help pinpoint errors.
With the -file-position command-line option, it
will flag the byte, column, and line, positions of the
start and end of the current token in both input and
output files. ‘

Here is a summary of the actions taken by bib-
clean on its input stream.

e Space between entries is discarded, and re-
placed by a single blank line.

399

Space around string concatenation operators is
standardized.

Leading and trailing space in value strings is
discarded, and embedded multiple spaces are
collapsed to a single space.

String lengths are tested against the limit in
standard BIBTEX, and warnings issued when
the limit is exceeded. The standard limit has
proven to be too small in practice, and many
sites install enlarged versions of BIBTEX. Per-
haps BIBTEX version 1.0 will use more realistic
values, or eliminate string length limits alto-
gether.

Outer parentheses in entries are standardized
to braces.

Braced value strings are standardized to quoted
value strings.

Field/value pairs are output on separate lines,
wrapping long lines to not exceed a user-
definable standard width whenever possible.
A trailing comma is supplied after the last field/
value assignment. This is convenient if assign-
ments are later reordered during editing.
~-fix-font-changes provides for protecting
value string text inside font changes from down-
casing.

Brace-level zero upper-case acronyms in titles
are braced to protect from downcasing.

-no-par-breaks provides a way to check for
blank lines in string values, which may be in-
dicative of unclosed delimiter errors.

Umlaut accents, \"x, inside value strings at
brace-level zero are converted to {\"x}. This
has been found to be a common user error.
BIBTEX requires embedded quotes to be nested
inside braces.

Letter-case usage in entry and field names is
standardized, so for example, mastersthesis
and MASTERSTHESIS become MastersThesis.

ISBN and ISSN checksums are validated.
BIBTEX style files that recognize field names for
them are available in the TUG bibliography col-
lection, and the bibliography for this document
uses them.

Name modifiers like Jr, Sr, etc., are recognized
and handled by -fix-names, and names are put
into a standard order, so that Bach, P. D. Q.
becomes P. D. Q. Bach.

With -fix-initials, uniform spacing is sup-
plied after brace-level zero initials in personal
names.

400

e With -check-values, citation key and field
values are matched against patterns to catch
irregularities and possible errors.

e Dates of the month, like "July 14", are con-
verted to use month abbreviations, jul #
n 14“'

o Page number ranges are converted to use en-
dashes, instead of hyphens or em-dashes.

e With -check-values, year numbers are checked
against patterns, then if no match is found, the
year values are checked against reasonable lim-
its.

e With -trace-file-opening, file open at-
tempts are logged. This helps in the diagnosis
of problems such as missing files, or incorrect
file permissions.

e On lexing or parsing errors, bibclean attempts
to resynchronize by flushing the input until it
finds the next line containing an initial @ char-
acter preceded by nothing other than optional
white space.

e When an @ character begins a line, a new bibli-
ography entry is assumed to have started. The
current brace balance is then tested to make
sure it is zero. A non-zero brace level is strongly
suggestive of an error, so bibclean issues an er-
ror message, and zeros the brace level.

e At end-of-file, the brace level is tested. A non-
zero brace level is very likely an error, and oc-
casions an error message.

5 Pattern matching and initialization files

bibclean can be compiled with one of three different
types of pattern matching; the choice is made by the
installer at compile time:

e The original version uses explicit hand-coded
tests of value-string syntax.

® The second version uses regular-expression
pattern-matching host library routines together
with regular-expression patterns that come en-
tirely from initialization files.

e The third version uses special patterns that
come entirely from initialization files.

The second and third versions are the ones
of most interest here, because they allow the user
to control what values are considered acceptable.
However, command-line options can also be speci-
fied in initialization files, no matter which pattern-
matching choice was selected.

When bibclean starts, it searches for initial-
ization files, finding the first one in the system ex-
ecutable program search path(on UNIX and IBM

TUGhboat, Volume 14 (1993), No. 4

PC-DOS, PATH) and the first one in the BIBINPUTS
search path, and processes them in turn. Then,
when command-line arguments are processed, any
additional files specified by -init-file filename
options are also processed. Finally, immediately
before each named bibliography file is processed,
an attempt is made to process an initialization
file with the same name, but with the extension
changed to .ini. The default extension can be
changed by a setting of the environment variable
BIBCLEANEXT. This scheme permits system-wide,
user-wide, session-wide, and file-specific initializa-
tion files to be supported.

When input is taken from stdin, there is no
file-specific initialization.

For precise control, the -no-init-files option
suppresses all initialization files except those explic-
itly named by -init-file filename options, either
on the command line, or in requested initialization
files.

Recursive execution of initialization files with
nested -init-file filename options is permitted;
if the recursion is circular, bibclean will finally get a
non-fatal initialization file open failure after opening
too many files. This terminates further initialization
file processing. As the recursion unwinds, the files
are all closed, then execution proceeds normally.

An initialization file may contain empty lines,
comments from percent to end of line (just like
TEX), option switches, and field/pattern or field/
pattern/message assignments. Leading and trailing
spaces are ignored. This is best illustrated by the
short example in Table 1. Long logical lines can be

Table 1: Sample bibclean initialization file.

%% Start with our departmental patterns
-init-file /u/math/bib/.bibcleanrc

%% Make some small additions
chapter = "\"D\"" hh 23

pages = u\uD__D\u " %% 23--27

volume "*D \\an\\d D\"" %% 11 and 12

year =\
"\"dddd, dddd, dddd\"" \
"Multiple years specified."
%% 1989, 1990, 1991

-no-fix-names %/ do not modify
%% author/editor lists

TUGhboat, Volume 14 (1993), No. 4

split into multiple physical lines by breaking at a
backslash-newline pair; the backslash-newline pair
is discarded. This processing happens while charac-
ters are being read, before any further interpretation
of the input stream.

Each logical line must contain a complete op-
tion (and its value, if any), or a complete field/pat-
tern pair, or a field/pattern/message triple.

Comments are stripped during the parsing of
the field, pattern, and message values. The com-
ment start symbol is not recognized inside quoted
strings, so it can be freely used in such strings.

Comments on logical lines that were input as
multiple physical lines via the backslash-newline
convention must appear on the last physical line;
otherwise, the remaining physical lines will become
part of the comment.

Pattern strings must be enclosed in quotation
marks; within such strings, a backslash starts an
escape mechanism that is commonly used in UNIX
software. The recognized escape sequences are given
in Table 2. Backslash followed by any other charac-
ter produces just that character. Thus, \" produces
a quotation mark, and \\ produces a single back-
slash.

Table 2: Escape sequences in quoted strings.

\a alarm bell (octal 007)

\b backspace (octal 010)

\f formfeed (octal 014)

\n newline (octal 012)

\r carriage return (octal 015)

\t horizontal tab (octal 011)

\v vertical tab (octal 013)

\ooo character number octal ooo (e.g.

\012 is linefeed). Up to 3 octal
digits may be used.

character number hexadecimal hh
(e.g. \0xOa is linefeed). xhh may
be in either letter case. Any num-
ber of hexadecimal digits may be
used.

\Oxhh

An ASCII NUL (\0) in a string will terminate
it; this is a feature of the C programming language
in which bibclean is implemented.

Field /pattern pairs can be separated by arbi-
trary space, and optionally, either an equals sign or
colon functioning as an assignment operator. Thus,
the following are equivalent:
pages="\"D--D\""
pages:"\"D--D\""

Pages ll\"D__D\H n

401

pages = ll\nD__D\nn

pages : "\"D--D\""
pages " \IID__D\ nwH
Each field name can have an arbitrary number of
patterns associated with it; however, they must be
specified in separate field /pattern assignments.

An empty pattern string causes previously-
loaded patterns for that field name to be forgot-
ten. This feature permits an initialization file to
completely discard patterns from earlier initializa-
tion files.

Patterns for value strings are represented in a
tiny special-purpose language that is both conve-
nient and suitable for bibliography value-string syn-
tax checking. While not as powerful as the language
of regular-expression patterns, its parsing can be
portably implemented in less than 3% of the code
in a widely-used regular-expression parser (the GNU
regexp package).

The patterns are represented by the special
characters given in Table 3.

Table 3: Initialization file pattern characters.

one or more Spaces

exactly one letter

one or more letters

exactly one digit

one or more digits

exactly one Roman numeral

one or more Roman numerals (i.e.

a Roman number)

w exactly one word (one or more
letters and digits)

W one or more words, separated by
space, beginning and ending with
a word
one ‘special’ character, one of the
characters !#QO*+,-./:;7[1",
a subset of punctuation charac-
ters that are typically used in
string values
one or more ‘special’ characters

X one or more ‘special’-separated
words, beginning and ending with
a word

\x exactly one x (x is any character),
possibly with an escape sequence
interpretation given earlier

x exactly the character x (x is any-

thing but one of these pattern

characters: aAdDrRwW. : \)

o H OO0

402

The X pattern character is very powerful, but
generally inadvisable, since it will match almost any-
thing likely to be found in a BIBTEX value string.
The reason for providing pattern matching on the
value strings is to uncover possible errors, not mask
them.

There is no provision for specifying ranges or
repetitions of characters, but this can usually be
done with separate patterns. It is a good idea to ac-
company the pattern with a comment showing the
kind of thing it is expected to match. Here is a
portion of an initialization file giving a few of the
patterns used to match number value strings:

number = "\"D\"" %% 23

number = "\"A AD\"" %% PN LPS5001
number = "\"A D(D)\"" %% RJ 34(49)
number = "\"A D\"" %% XNSS 288811
number = "\"A D\\.D\"" %% Version 3.20
number = "\"A-A-D-D\"" %% UMIAC-TR-89-11
number = "\"A-A-D\"" %% CS-TR-2189
number = "\"A-A-D\\.D\"" %% CS-TR-21.7

For a bibliography that contains only Article en-
tries, this list should probably be reduced to just
the first pattern, so that anything other than a digit
string fails the pattern-match test. This is easily
done by keeping bibliography-specific patterns in a
corresponding file with extension .ini, since that
file is read automatically. You should be sure to use
empty pattern strings in this pattern file to discard
patterns from earlier initialization files.

The value strings passed to the pattern matcher
contain surrounding quotes, so the patterns should
also. However, you could use a pattern specification
like "\"D" to match an initial digit string followed
by anything else; the omission of the final quota-
tion mark \" in the pattern allows the match to
succeed without checking that the next character in
the value string is a quotation mark.

Because the value strings are intended to be
processed by TEX, the pattern matching ignores
braces, and TEX control sequences, together with
any space following those control sequences. Spaces
around braces are preserved. This convention allows
the pattern fragment A-AD-D to match the value
string TN-K\slash 27-70, because the value is im-
plicitly collapsed to TN-K27-70 during the matching
operation.

bibclean’s normal action when a string value
fails to match any of the corresponding patterns is to
issue a warning message similar to this: Unexpected
value in ‘‘year = "192"’’. In most cases, that
is sufficient to alert the user to a problem. In some
cases, however, it may be desirable to associate a dif-

TUGhboat, Volume 14 (1993), No. 4

ferent message with a particular pattern. This can
be done by supplying a message string following the
pattern string. Format items %% (single percent), %e
(entry name), % (field name), %k (citation key), and
%v (string value) are available to get current values
expanded in the messages. Here is an example:

chapter = "\"D:D\"" \
"Colon found in ‘‘%f = %v’>’" %% 23:2

To be consistent with other messages output by
bibclean, the message string should not end with
punctuation.

If you wish to make the message an error, rather
than just a warning, begin it with a query (7), like
this:
chapter = "\"D:D\"" \

"?Colon found in ‘‘%f = Y%v’’" %% 23:2

The query will not be included in the output mes-
sage.

Escape sequences are supported in message
strings, just as they are in pattern strings. You can
use this to advantage for fancy things, such as termi-
nal display mode control. If you rewrite the previous
example as

chapter = "\"D:D\"" \
"?\033[7mColon found \
in C%f = %v’’\033[0m" %% 23:2

the error message will appear in inverse video on
display screens that support ANSI terminal control
sequences. Such practice is not normally recom-
mended, since it may have undesirable effects on
some output devices. Nevertheless, you may find it
useful for restricted applications.

For some types of bibliography fields, bibclean
contains special-purpose code to supplement or re-
place the pattern matching:

o ISBN and ISSN field values are handled this way
because their validation requires evaluation of
checksums that cannot be expressed by simple
patterns; no patterns are even used in these two
cases.

o When bibclean is compiled with pattern-
matching code support, chapter, number,
pages, and volume values are checked only by
pattern matching.

e month values are first checked against the stan-
dard BIBTEX month name abbreviations, and
only if no match is found are patterns then used.

e year values are first checked against patterns,
then if no match is found, the year numbers
are found and converted to integer values for
testing against reasonable bounds.

TUGboat, Volume 14 (1993); No. 4

Values for other fields are checked only against
patterns. You can provide patterns for any field
you like, even ones bibclean does not already know
about. New ones are simply added to an internal ta-
ble that is searched for each string to be validated.

The special field, key, represents the biblio-
graphic citation key. It can be given patterns, like
any other field. Here is an initialization file pattern
assignment that will match an author name, a colon,
an alphabetic string, and a two-digit year:

key = "A:Add" %% Knuth:TB86

Notice that no quotation marks are included in the
pattern, because the citation keys are not quoted.
You can use such patterns to help enforce uniform
naming conventions for citation keys, which is in-
creasingly important as your bibliography data base
grows.

6 Lexical analysis

The command-line option -no-prettyprint re-
quests bibclean to function as a lexical analyzer
instead of as a prettyprinter. Its output is then a
stream of lines, each of which contains one token.
For the bibliography entries shown in Section 1, here
is what the output looks like; the long lines have
been wrapped by a backslash-newline to fit in these
narrow journal columns:

line 1 "stdin"

2 AT ||©Il

18 STRING "String"

11 LBRACE "{"

1 ABBREV "pub-AW"

6 EQUALS ="

line 2 "stdin"

19 VALUE "\"Ad{\\-d}i{\\-s}on-Wes{\
\\-1}ey\""

15 RBRACE "}

line 4 "stdin"

13 NEWLINE "\n"

13 NEWLINE "\n"

2 AT "

5 ENTRY "Book"

11 LBRACE "{"

10 KEY "Lamport:LDP85"
3 COMMA "on

13 NEWLINE "\n"

line 5 "stdin"

7 FIELD "author"

6 EQUALS "="

19 VALUE "\"Leslie Lamport\""
3 COMMA "o

13 NEWLINE "\n"

line 6 "stdin"

403
7 FIELD "title"
6 EQUALS "="
line 8 "stdin"
19 VALUE "\"{\\LaTeX}---{A} Docume\

nt Preparation System---User’s Guide and \
Reference Manual\""

3 COMMA "

13 NEWLINE "\n"

line 9 "stdin"

7 FIELD "publisher"
6 EQUALS ="

1 ABBREV "pub-AW"

3 COMMA o

13 NEWLINE "\n"

line 10 "stdin"

7 FIELD "year"

6 EQUALS "="

19 VALUE "\"1985\""
3 COMMA "o

13 NEWLINE "\n"~

line 11 "stdin"

7 FIELD "ISBN"

6 EQUALS "=t

19 VALUE "\"0-201-15790-X\""
3 COMMA "

13 NEWLINE "\n"

line 12 "stdin"

15 RBRACE "}

line 13 "stdin"

13 NEWLINE "\n"

Each line begins with a small integer token type
number for the convenience of computer programs,
then a token type name for human readers, followed
by a quoted token string.

Lines beginning with a sharp, #, are ANSI/ISO
Standard C preprocessor line-number directives [3,
Section 3.8.4] to record the input line number and
file name.

There are currently 19 token types defined in
the documentation that accompanies bibclean. Be-
cause BIBTEX styles can define new field names,
there is little point in the lexical analyzer of attempt-
ing to classify field names more precisely; that job
is left for other software.

Inside quoted strings, the ANSI/ISO Standard
C [3, Section 3.1.3.4] backslash escape sequences
shown in Table 2 on page 401 are used to encode
non-printable characters. In this way, a multi-line
string value can be represented on a single line. This
is convenient for string-searching applications. If the
long output lines prove a problem on some systems,
the -max-width nnn command-line option can be
used to wrap lines at a specified column number by
the insertion of a backslash-newline pair.

404

As a simple example of how this token stream
might be processed, the UNIX command pipeline

bibclean -no-prettyprint mylib.bib | \

awk '$2 == "KEY" {print $3}’ | \

sed ~e "s/"//g’ | \

sort]
will extract a sorted list of all citation keys in the
file mylib.bib.

As a more complex example, consider locating
duplicate abbreviations and citation keys in a large
collection of bibliography files. This is a daunting
task if it must be done by visual scanning of the files.
It took me less than 10 minutes to write and debug
a 35-line nawk [1] program (15 lines of comments, 20
of code) that processed the token stream from bib-
clean and printed warnings about such duplicates.

The processing steps can be represented by the
simple UNIX pipeline
bibclean -no-prettyprint bibfiles | \

tr ’[A-Z]° [a-z]’ | \

nawk -f bibdup.awk
which is most conveniently encapsulated in a com-
mand script so that it can be invoked more simply
as

bibdup *.bib
to produce output like this:

Duplicate string abbreviation ["pub-aw"]:
line 1 "1l.bib"
line 141 "master.bib"
Duplicate key ["lamport:1dp85"]:
line 4 "11.bib"
line 4172 "master.bib"

BIBTEX’s grammar is somewhat hazy, so it is
not easy to perform a lexical analysis without some
context sensitivity. bibclean therefore produces the
lexical token stream merely as an alternate output
format. In particular, this means that any requested
run-time formatting options will have been applied
to the tokens before they are output to the lexical
token stream. For example, a SCRIBE bibliography
file can be converted to a BIBTEX token stream so
that software that processes bibclean’s output need
not be SCRIBE-aware.

7 Portability

bibclean is written in ANSI/ISO Standard C (3]
with great care taken to produce maximum portabil-
ity. It has been successfully tested with more than
30 different compilers on all major workstation, and
one mainframe, UNIX systems, plus VAX VMS, PC-
DOS, 0S/2, and Atari TOS.

TUGboat, Volume 14 (1993), No. 4

The C programming language has become the
language of choice today for most personal computer
and UNIX software development, and the increasing
availability of C implementations conforming to the
1989 Standard [3] makes it easier to write code that
will compile and run without modification on a wide
variety of systems.

C does not have Pascal’s problems with char-
acter strings and dynamic memory allocation that
forced Don Knuth to implement the WEB string pool
feature and to use compile-time array allocation in
the TgX software development. C’s rich operator
syntax, its powerful run-time library, and generally
excellent operating-system interfaces have made it
widely popular. More than a million copies of the
first edition of The C Programming Language book
[13] have been sold, and the second edition {14] may
do even better.

Nevertheless, C has some serious problems.
Philippe Kahn, the founder of Borland Interna-
tional, has called C a write-only language. Two
books have been written about its syntactical pe-
culiarities [9, 17], and one of them has already ap-
peared in a second edition.

The only way to overcome these problems is
meticulous care in programming, and experience
with as many compilers and computer architectures
as possible. Several books offer valuable advice on
C portability [10, 11, 19, 23, 24, 26, 29].

C++ [8, 30] is an extension of C to support
object-oriented programming, and has an enthusias-
tic following. ANSI/ISO standardization efforts are
in progress, sadly while the language is still evolving.

From the point of view of a C programmer, the
advantage of C++ over C is its much stricter check-
ing of type conversions and intermodule interfaces.
bibclean has been carefully written to be compil-
able under C++ as well as C, and to date, has been
tested with more than a dozen C++ and Objective
C (another C superset) compilers.

All of the extra features of the C++ language
are strictly avoided, because using them would se-
riously limit bibclean’s portability. Not only is
the syntax of the C++ language under evolution,
but the C++ class libraries are for the most part
completely dependent on the particular implemen-
tation. Microsoft’s 1020-page documentation of its
C++ class library is 10% larger than that of its C
run-time library.

Nevertheless, I strongly recommend use of C++
compilers in preference to C compilers, so as to catch
bugs at compile time that would otherwise not be
found until post-mortem dump time, or when the
code is ported to a new architecture.

