
The Communications of the T$jX Users Group

Volume 13, Number 2, July 1992

T)ijX Users Group

Memberships and Subscriptions
TUGboat (ISSN 0896-3207) is published four times
a year plus one supplement by the l)jX Users
Group, 653 North Main Street, P.O. Box 9506,
Providence, RI 02940, U.S. A.

1992 dues for individual members are as follows:
Ordinary members: $60
Students: $50

Membership in the 'IpJ Users Group is for the cal-
endar year, and includes all issues of TUGboat and
l&X and TUG News for the year in which member-
ship begins or is renewed. Individual membership
is open only to named individuals, and carries with
it such rights and responsibilities as voting in the
annual election. A membership form is provided on
page 235.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
delivery by surface mail $60, by air mail $80.

Second-class postage paid at Providence, RI,
and additional mailing offices. Postmaster: Send
address changes to the QjX Users Group, P. 0 . Box
9506, Providence, RI 02940, U.S.A.

Inst i tut ional Membership
Institutional Membership is a means of showing
continuing interest in and support for both l)jX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat @ Copyright 1992, rn Users Group
Permission is granted to make and &stribute verbatim

copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the TkX Users
Group instead of in the original English.

Some individual authors may wish to retain traditional
copyright rights to their own articles. Such articles can be
identified by the presence of a copyright notice thereon.

Board of Directors

Donald Knuth, Grand Wizard of m-arcanat
Malcolm Clark, President*
Ken Dreyhaupts, Vice President
Bill Woolf* , Treasurer
Peter Flynn*, Secretary
Peter Abbott, Vice-President for UKQjRUG
Bernard Gaulle, Vice-President for GUTenberg
Roswitha Graham, Vice-President for

the Nordic countries
Kees van der Laan, Vice-President for NTG
Joachim Lammarsch, Vice-president for DANTE
Barbara Beeton
Luzia Dietsche
Michael Ferguson
Raymond Goucher, Founding Executive Directort
Yannis Haralambous
Doug Henderson
Alan Hoenig
Anita Hoover
Mimi Jett
David Kellerman
Nico Poppelier
Jon Radel
Christina Thiele
Hermann Zapf, Wizard of Fontst
*member of executive committee
t honorary
See page 131 for addresses.

Addresses
General correspondence:
TEX Users Group
P. 0 . Box 9506
Providence, RI 02940
Payments:
TEX Users Group
P. 0 . Box 594
Providence, RI 02901
Parcel post,

delivery services:
TEX Users Group
653 North Main Street
Providence, RI 02904

Telephone
401-751-7760

Fax
401-751-1071

Electronic Mai l (Internet)
General correspondence:
TUGQMat h . AMS . corn
Submissions to TUGboat:
TUGboatQMath.AMS.com

is a trademark of the American Mathematical
Society.

[Jenson] was so intent on legibility that he disregarded
conformity to any standard- an innovation that modern
designers might well consider.

. Frederic W. Goudy,
The Alphabet and E l e m e L
of Lettering (1942)

COMMUNICATIONS OF THE 'I)jX USERS GROUP
EDITOR BARBARA BEETON

JULY 1992
U.S.A.

T U G b o a t T U G b o a t Editorial Board

During 1992. the communications of the rn Users
Group will be published in four issues. One issue
(Vol. 13, No. 3) will contain the Proceedings of the
1992 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to
be the expert on the topic. Questions regarding
content or accuracy should therefore be directed
to the authors, with an information copy to the
Editor.

Submi t t ing I tems for Publ icat ion

The next regular issue will be Vol. 13, No. 4;
deadlines are August 18, 1992, for technical items,
and September 15, 1992, for reports and similar
items; this issue is scheduled to be mailed in
November. (Deadlines for future issues are listed in
the Calendar, page 231.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor, in care of the TUG office.

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either p l a i n

or LPW, are available "on all good archives".
For authors who have no access to a network, they
will be sent on request: please specify which is
preferred. For instructions, write or call Karen
Butler at the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboatOMath . AMS . corn on the Internet.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit their
names and interests for consideration; write to TUG-
boatQMath. AMS. corn or to the Editor in care of the
TUG office.

Barbara Beeton. Editor
Victor Eijkhout, Associate Editor, Macros
Jackie Damrau, Associate Editor,
Alan Hoenig, Associate Editor, Typesetting on

Personal Computers
See page 131 for addresses.

Othe r TUG Publications

TUG publishes the series m n i q u e s . in which have
appeared reference materials and user manuals for
macro packages and lJ$-related software. as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on m n i c a l subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such
items or know of any that you would like considered
for publication, contact Karen Butler at the TUG
office.

TUGboa t Advertising a n d Mail ing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call Karen Butler at the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic. Inc.
DOS and MSIDOS are trademarks of Microsoft

Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PC 7&X is a registered trademark of Personal TEX,

Inc.
Postscript is a trademark of Adobe Systems. Inc.
QX and AMS-W are trademarks of the American

Mathematical Society.
Textures is a trademark of Blue Sky Research.
UNIX is a registered trademark of CNIX Systems

Laboratories. Inc.

TUGboat, Volume 13 (1992), No. 2

General Delivery

Changing w?
Malcolm Clark

The topic of a 'future' rn has been a source of
discussion ever since managed to slip out from
Knuth's office. And twice there have been 'official'
developments to the fundamental model: first with
the transition from the original SAIL implementa-
tion through Pascal and eventually WEB-to what
became known as m 8 2 when it was first released;
and more recently the mild tinkering (by compar-
ison) which is colloquially termed W 3 . Knuth
has made quite clear that he will not change w
again, and that while he is happy for anyone else
to embed the program code in other applications.
those applications are not to be termed TEX. In
passing I recall how much time I spent between 1984
and 1989 extolling one of the great merits of T@-
that it was fixed and need not be relearned, unlike
the tide of of other (and commercial) software; only
to have to retract a little in 1989. But this time I'm
even more convinced.

But still, there are repeated reminders that TJ$
is not perfect and that in order to stem the tide
of newer, and obviously more desirable, systems for
typesetting, document preparation, and electronic
publishing, some radical surgery is needed. It
seems hardly surprising to me that later systems
should not surpass in their quality: I am more
surprised that they often fail to do so. For example,
given the relative ease with which the mathematical
typesetting of rn might be extracted and used
elsewhere, it comes as more of a surprise that
even now, few other systems approach the standard
which is already 14 years old. In my cynical
moments I suspect that the world may not be as
concerned with quality as rn claims to be.

How can these many suggestions for enhance-
ment or improvement be accommodated? In the
first place, we have to acknowledge that many
'enhancements' have taken place: from the very
beginning there were variants - the shadowy Tyx,
and latterly V O R ~ , M L W , VT&X and so on.
They appear to meet Knuth's requirement that
they are not called TEX. They each offer some
extensions to meet some perceived lack or need
(although V o w ' s pedigree is a little different).
But what really are the most significant de-
velopments over the last ten years? The important

development has been IPT@ - a change to the user
interface, rather than an enhancement of some con-
cept of typographic quality. Like its host, m, it
is an imperfect tool, but pragmatists recognize its
widespread generality and applicability.

The major extensions of BIB^ and Ma kelndex
were designed for use with IP-TFJ. If there are two
things we need right now, they are 'finished' versions
of BIB^ and Makelndex for every platform that
runs IP-TFJ - and the documentation that goes
with them. If the new books which are appearing
managed to include these support facilities, they
would being doing us all a service. (And if BIB^
format were to be an output format of the many
on-line bibliographies, that would be even nicer.)

In another area of 'support' facilities, it seems
to me that one of the great imponderables is
slowly disappearing: I almost always know how
to invoke (I 4) w , but figuring out how to magic
up the printer driver is often a mystery. As
POSTSCRIPT continues its inexorable growth, Tom
Rockiki's DVIPS appears to be emerging as the most
widely supported driver. This give us the chance
of de facto standardization and the chance to use
the \specia l command without grief (probably to
incorporate some graphics). If we couple this with
the various applications which convert POSTSCRIPT
to what your laser printer or screen can display (and
some of these are public domain) we are heading
for a device independence which was only a dream
a few years ago.

Am I just being complacent? Is it sufficient
to accommodate increased functionality and an
improved user interface within the present shell? -
one of the things which the Urn3 project should
deliver. Should I rather be worrying that it is
difficult to create magazines like Newsweek with
(IP)W? Would I be grateful for a copy of Frame,
Interleaf, Grif, 3B2, or even Quark XPress? I
quail before the thought of all that re-learning,
frustration, the need to keep up with upgrades,
the inability to swap documents easily between my
Vax, SparcStation, Macintosh and the crufty MS-
DOS machine gathering dust in the corner. Will
I have to learn how to design documents myself?
Life is too short. In future columns I will discuss
how Shakespeare's Sonnets need drastic re-writing,
and how Mozart's Magic Flute requires a change
in the underlying paradigm to accommodate the
developments in rap music and sampling.

But the 'stasis' strategy only retains the exist-
ing users: would anyone volunteer to adopt (@)w
from scratch? The one area we have done the most
effective and consistent job is in telling everyone

TUGboat, Volume 13 (1992), No. 2

how difficult (I4)m is to use, and what a dreadful
typeface Computer Modern is. It used to be the En-
glish who had a reputation for under-statement and
self-deprecation. (I 4) W i e s have easily overtaken
them. Why should this be?

Somewhere in this hyperbole serious questions
are lurking. To what extent should TUG be pur-
suing the 'future' of TEX? And which future? If
we examine the TUG Bylaws, we will note that
TUG was set up to 'identify, develop, operate, fund,
support, promote and encourage charitable, educa-
tional and scientific programs and projects which
will stimulate those who have an interest in sys-
tems for typesetting technical text and font design'.
The german-speaking group, DANTE, addressed the
topic of a future !l&X at their Hamburg conference
(reported in this issue of TUGboat by Phil Taylor).
and Rainer Schopf has since set up an electronic
discussion list. There is a paradox here of course:
those who do want to change Q j X are more likely
to participate than those who don't. It will be
useful and instructive to see what shakes out of
these discussions. There has already been a wide
range of opinions expressed, from creeping featurism
through to the adoption of new paradigms.

Of course, the choices are not simple, or ex-
clusive. Improvements will take place in the user
interface; a t the same time, some brave souls will
modify the underlying code. If changes are not gen-
erally available, and are restricted for proprietary
or platform reasons, they are unlikely to be adopted
by the present user base: if there is insufficient
upwards compatibility, the inertial mass of exist-
ing documents may also discourage adoption; the
prospect of change is ambiguous-it excites some
and depresses others. Consider two examples of the
diffusion of changes in the TEX world: the change
from Almost Modern to the Computer Modern
typeface took an age, perhaps because the changes
did not seem noticeable (so much for quality!); the
change to 33X3 appears to have been very swift -
the lure of 8-bit input and the enthusiasm of the
non-English speaking users seems to have been a
major driving force here. Interesting times.

Editorial Comments

Barbara Beeton

Another honor for Donald Knuth

During a ceremony held in the Stockholm City
Hall on November 15th 1991, Donald Knuth was
appointed Honorary Doctor of Technology by the
School of Computer Science and Engineering, KTH,
Stockholm. The appointment was accompanied by
this citation.

Professor Donald Knuth is very well known
to us, not only in Computer Science, but also
in the fields of Mathematics and Typogra-
phy. He has through his creative research and
his monumental work The Art of Computer
Programming made major contributions to
the modern research area of mathematical
analysis of algorithms and their complexity
(performance), as well as given the virgin
computer science a firm mathematical struc-
ture of great importance to undergraduate
and graduate studies.

Roswitha Graham, head of the Nordic TEX User
Group, has provided the following report.

"Professor Knuth has for a long time had
close contacts with researchers within the School
of Computer Science and Engineering at KTH,
and he is also present daily through his advanced
computer tool for production of technical and

o Malcolm Clark
Information Resource Services
Polytechnic of Central London
115 New Cavendish Street
London W1M 8JS, England
UK
Janet: malcolmc@uk.ac.pcl.mole

Donald Knuth receiving his KTH degree

TCGboat, Volume 13 (1992), No. 2

mathematical reports with high quality typography,
used by many students and researchers at KTH.
The Nordic TEX User Group annual meeting 1991,
was held on the l g t h of November at KTH, with
Professor Donald Knuth invited as guest of Honour
and participants from four of the Nordic countries.

"The programme focused on needs and so-
lutions for w quality typesetting of European
languages as well as the I P m user interface. Spe-
cially invited guest speakers were Frank Mittelbach,
Germany, and Yannis Haralambous, France, who
together with Jan Michael Rynning, KTH, Sweden
(Swedish hyphenation for m), gave background to
problems and pointed to solutions. Other speakers
were Leif Andersson (A POSTSCRIPT font family for
w) , Niels Mortensen (Math and natural science
typesetting-a report format). Peter Busk
Laursen (XIPm-extensions to I P W and TEX
at UN1.C while we wait for I P m 3.0) and Steen
Larsen (Tailored database publishing with m)."

The session with Don was recorded, as was
a later, less formal conversation between him and
Roswitha. Among the topics discussed were Don's
goals for his own work (which are centered around
The Art of Computer Programming and do not
include more work on m) and his impressions of
the current contributors to TEX development. We
hope to have excerpts from these sessions ready for
publication in the fall issue.

Journals accepting '7&X input

A topic that keeps appearing in the electronic
?jEX discussion lists is, "What journals accept
manuscripts prepared in m?" My attention to
this topic has been sharpened recently with the
appearance of two items from unrelated sources.

The first item is a new journal that will
be prepared with m : the Journal of Computer
Security, published by IOS Press in Amsterdam.
The director of the Press. Dr. Einar H. Fredriksson,
sent me a copy for information, with the following
comment:

As publisher I feel the TEX developments and
potential have reached a point where we may
have t o re-evaluate the journal publishing
system-and make all authors part of your
Group.

This hardly sounds like an organization reluctant
to embrace a new technology. A statement in the
journal acknowledges the use of T&X and states
that in general, the author's m files will be able
to be used for articles accepted for publication;
"[ilf possible, the authors are requested to use the

publisher's macros for the journal." (This is a le-
gitimate request, as by so doing. authors will assure
that their submissions conform to the production
requirements of the journal, and thereby reduce the
length of time between acceptance and publication
by decreasing the technical demands on the journal
staff.) TUG members interested in the research area
covered by this new journal can find out more about
the journal from one of the editors-in-chief: Prof.
Sushi1 Jajodia of George Mason University (j a j o-
dia@gmuvax2. gmu . edu) or Dr. Jonathan Millen of
the MITRE Corporation (j kmQmbunix .mi t re . org);
anyone without net access who requires a postal
address can obtain this information from the TUG
office.

The second item that caught my attention
was a letter in the weekly Science News from the
editor/publisher of Solstice: An Electronic Journal
of Geography and Mathematics, Sandra Lach Ar-
linghaus, Director of the Institute of Mathematical
Geography, Ann Arbor, Michigan. This letter
states, in part,

Solstice is typeset using m, and it is
the file that is transmitted, complete
with typeset tables as well as complicated
mathematical notation. Indeed, Solstice has
even run (in addition to scientific tables) an
occasional crossword or word search puzzle
simply to suggest this perhaps unexpected
capability. It also transmits some figures -
any that can be set using 'l&X. Solstice does
claim to disseminate scientific results in an
electronic form, and not only does it claim
to do so, it does so.'

The core of this item stresses a fact that has been
obvious for years to users: that T)&X is not
only a tool for communicating on paper, but can
also be a means of structuring information for an
electronic audience.

An incomplete list of journals, paper and
electronic, that accept submissions in T$jX form
is given in the file texjourn.bib; this file and
other=-related bibliographic information can be
found at the archive math.utah.edu in the direc-
tory /pub/tex/bib. The contents of two of the files
in that area- texbookl .b ib and texbook2 .bib-
were published in the 1991 TUG Resource Di-
rectory; many additions have been made since
then. Further additions to this bibliography are
solicited (please check the current listings first);
send them, preferably in BIB^ form, to Nelson
Beebe (beebeamath . utah . edu).

Reprinted with the permission of the author

TUGboat, Volume 13 (1992), No. 2

The new membership list

Accompanying this issue of TUGboat is this year's
membership list. You may notice that some infor-
mation that was present last year isn't there in this
edition, namely information about the hardware
each member is using and the separate listings of
members by computer and output device. The
reason for this is the reduction of the staff in the
TUG office, reported in 7J$ and TUG News earlier
this year.

All address information has been posted in full,
and appears in the same form as before. Regardless
of staff availability, address updates must be kept
current if TUG is to avoid delivery problems, and
thus additional postage costs, on account of out-of- '
date information.

Hardware information is particularly suscepti-
ble to variation, and the time required to normalize
and enter it into the database proved to be more
than the reduced TUG office staff could handle.
Actually, it has not been clear for some time how
useful publication of this information is to the "av-
erage" member - a page and a half of names under
the heading "IBM PC" doesn't seem to represent
the same value as the same number of pages of a
listing by geographical location. But your opinion
is what counts. If you feel this information is
essential, and especially if you have suggestions on
how to streamline the process and make the pre-
sentation more useful, please send your suggestions
to the TUG office, marked for the attention of the
Membership Committee.

TUGboat production notes

The production of a publication such as this one is
somewhat more complex than I believe most readers
are aware. Some idea of the technical complexity
can be gained by reading the production notes that
appear in each issue. There are other facets to this
as well, that I don't usually make a fuss about, but
feel it's important to let the readers know why it
takes so long to put each issue together.

Beginning with volume 12, no. 2, every article
published in a regular issue has been subjected to
a technical review by a volunteer referee, and the
same is being done with this year's annual meeting
proceedings. This review is not as intense as those
for, say, the Transactions of the AMS or The New
England Journal of Medicine, but it has resulted in
numerous changes, and I think has improved the
quality of the individual articles. The intent is not
to decrease the number of articles published, but
to make the articles that are published as accurate
and informative as possible. This review takes time.

as does the interaction between editorial board
and authors, to make sure the suggested changes
are understood and properly installed. I would
like to take this opportunity to thank the referees,
who shall continue to remain nameless. There
is more work than there are referees at present,
and if you wish to perform a useful service (and
see some interesting material prior to publication),
you are invited to send your name in to the
TUG office, care of the Editor, or via e-mail to
tugboatamath. ams . corn; please include a reliable
address (e-mail if possible) and a description of
your particular strengths and interests as well as
identification of areas you wish not to cover.

The number of items is an important factor in
determining how much time it takes to produce an
issue. Most items are represented by two files - one
for the publishable item, and one containing various
auxiliary information concerning its receipt, review,
and progress from submission to publication. But
some items are much more complicated, requiring
additional files of macros, examples, figures, and
the like. For example, the archive for issue 13
no. 1 contains 197 files for 34 items listed in the
contents. Ignoring the files of correspondence and
other administrivia, that still comes to more than a
hundred files. However worthy an idea, electronic
distribution of tugboat is a concept whose time has
not yet come, at least under the present staffing
limitations.

A technical complication is the variety of forms
in which articles may be submitted. There are
essentially no restrictions, and submissions have
been received on paper, on DOS or Mac diskettes,
as coded (usually by uuencode or atob, but we
haven't had much success with the latter) or unen-
coded files with or without compression, by e-mail
or placed in directories for ftp access, as source
(sometimes without markup, but mostly using
the TUGboat plain or LPm macros, or. less of-
ten, some other scheme that must be translated to
TUGboat style) or .dv i files. Usually, an article
or two per issue requires font work-if the author
agrees, we will generate fonts for one of the available
typesetters (so that the quality of the camera copy
is uniform) as well as for the local laser printers
that are used to generate proof output. A growing
number of submissions incorporate POSTSCRIPT
inclusions, and the behavior of the (encapsulated)
POSTSCRIPT code depends highly on the output
device driver being used. Even files received in
standard . dvi form aren't immune from problems;
one such article in this year's first issue L'broke"
three typesetter drivers before we succeeded in find-
ing one that would actually print it (three different

TUGboat, Volume 13 (1992), No. 2

laser printer drivers and two previewers had pro-
duced satisfactory output, and the sudden failure at
typesetter stage was a big surprise); the situation
was dicey for a while, and we weren't sure that
we wouldn't have to publish from laser output, but
finally an acceptable combination was found and we
got our typsetter output. By such little disasters we
continue to learn and improve. But all this takes
time, and attention from someone with substantial
experience. Not a job for beginners.

Another facet of the scheduling problem is my
own availability. Since 1986 I have been a member of
national and international standards working groups
developing a font standard for the International
Organization for Standardization (ISO). These
working groups meet at least 7 times per year, for
a week or sometimes two at a time. Several times
in the past few years these meetings have coincided
with critical points in the TUGboat production
schedule. Also, since the beginning of 1991. 1 have
had no production assistance. This affects only
regular issues, as proceedings issues are edited by
other volunteers, with production in the TUG office.
All these complications are magnified by the fact
that editing TUGboat is a "hobby"; the job that
pays the bills is in the Technical Support Group
at the American Mathematical Society. What this
means is that there is quite frequently nobody
home to carry on the necessary correspondence,
and delays result. This problem is being worked
on. and I am hoping that assistance will once again
become a reality later in the year. During this
difficult period, thanks for your understanding.

I wouldn't like to leave the impression that
the TUGboat experience is typical for publishers
accepting articles or books in m. By its nature,
TUGboat is expected to contain items that stretch
the boundaries of what is possible with m. Most
"ordinary" publishers don't want, don't expect, and
aren't prepared to deal with such complications.
They have, by and large, adopted ll$K because
of pressure from authors. But they still have a
bottom line to look out for, and this doesn't allow
much experimentation. So the successful publishers
create macros that will help an author produce
exactly what they are looking for, and instructions
in using those macros. And smart authors follow
the instructions.

0 Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940
USA
bnb@Math.AMS.com

TUG Seeks Executive Director

The individual selected for this position will oversee
the business and information dissemination activ-
ities of TUG; direct the promotional program to
develop membership and TUG activities; develop
a program of volunteer efforts for TUG activities;
manage a small office staff with clerical, technical,
and bookkeeping functions; and interact with TUG
members and others in fields of interest to TUG.
The Executive Director will report to TUG Board
of Directors.

The following criteria will be considered as
applicants are evaluated:

experience in managing a business;
skill in managing the retrieval, organization
and dissemination of information;
experience with the program l&X and related
programs;
computer experience and capability of under-
standing technical questions regarding m and
related programs;
good writing and speaking skills;
good interpersonal skills;
knowledge of considerations in managing a
professional, non-profit association.

Applicants for this position should send indi-
cation of their interest and copies of their curricula
vitae to:

Search Committee
?QX Users Group
P. 0 . Box 9506
Providence, RI 02940 USA

The ll$K Users Group is an Equal Opportunity
Employer.

TUGboat, Volume 13 (1992), No. 2

w: The Next Generation

Philip Taylor

The notice of the annual DANTE meeting included
an announcement that DANTE had decided to set
up a working group to co-ordinate the further
development of T&C This announcement was
circulated widely via the electronic lists, and all
were invited to contribute ideas and work towards
this goal. The first session of the working group
took place at the end of March in Hamburg.

The meeting was opened by Joachim Lam-
marsch, who announced the creation of a group to
co-ordinate an investigation into the future of TEX
(the name will not be TJ$, but no specific new
name was proposed). The group will be led by
Rainer Schopf, and will include Peter Abbott, Pe-
ter Breitenlohner, Frank Mittelbach, Philip Taylor.
Joachim Schrod, and Norbert Schwarz.

An e-mail list with open membership will be set
up (NTS-LOVM . URZ . Uni-Heidelberg . de); it will be
the primary source of suggestions to the group. The
name 'NTS' is short for 'New Typesetting System'.
and is intended to be no more than an interim.
working, non-contentious, name for the project .'

Joachim then passed the meeting over to
Rainer, who took as his starting point a paper
that I had previously written in which were out-
lined five apparent options. These are:

1) Leave as it is now. If Don is sufficiently
happy with TEX that he is prepared to leave it
for posterity in its present form, then I think
we should certainly consider that as an option
for the TEX world as a whole.

2) Extend by just enough that those who
really understand its deficiencies agree that the
extensions are not only justified but essentzal:
i.e. there are some 'simple' typesetting tasks
with which m r cannot deal correctly, but
with which an Extended TEX could.

3) Extend TljX to incorporate the combined wish-
lists of the major TEX practitioners. while
retaining W ' s present 'look-and-feel'.

4) Extend T&X as in (3) . also taking the opportu-
nity to reconsider w ' s 'look-and-feel' and to
implement major changes in that area if it is
felt beneficial.

5) Design a typesetting system for the 21St Cen-
tury. using whatever elements of TEX arr felt
to continue to represent the state of the type-
setting art .

Look at the last three words of the very first
line in The T&Ybook; thanks to Kresten Krab
Thorup for pointing this out.

Rainer felt that (1) was not an option. and we
then discussed in open forum options (2)-(5), all
of which were felt by some present to have some
merit. No firm decision was made as to which to
pursue, and it was pointed out that the options were
not necessarily exclusive - one could, for example,
select (2) as a short time scale immediate action
plan, while investigating (5).

The meeting then went on to take sugges-
tions from the floor as to possible improvements,
enhancements or suggestions. These included:

Support for graphics;
Support for colour;
Support for rotated text;
Support for grid alignment;
Improved algorithms for page layout;
Elimination of hard-coded constants and con-
vent ions;
Improvement of TEX as a programing language;
Extension of the 'boxes & glue' paradigm;
Support for line numbering;
Improvement of orthogonality and completeness:
'Make TEX object-oriented';

0 Remove 'superfluous features'.

One speaker presented his own list:
Who will (or should) use TEX?
What is the user interface to be?

0 Is backward compatibility essential, and if so,
at the DVI or level?

0 The legal status;
An implementation environment.

The meeting attempted to categorise these
suggestions in terms of the five proposed options.
but it became obvious that this was neither the
time nor the place to do so. The meeting was then
drawn to a close.

Addendum. The discussion list has now become
active. Anyone interested in contributing to this
activity can subscribe by sending the message

SUBSCRIBE NTS-L (given name) (surname)

to L1STSERVQVM.URZ.Uni-Heidelberg.de. The
NTS-L discussion is archived on

ftp.th-darmstadt.de C130.83.55.751
directory pub/tex/documentation/nts-1

Files in this directory are bundled by month, named
yymm, where yy is the year and mm is the month
when the mail arrived. Access to this archive is via
anonymous ftp. Access via mail-server will be made
available later this year.

o Philip Taylor
Royal Holloway and Bedford New College

"The University of London at Xindsor"
P.TaylorQvax.rhbnc.ac.uk

TUGboat, Volume 13 (1992), No. 2

Software

Knuth's Profiler Adapted to the
VMS Operating System

R.M.Damerel1

Abstract

This article describes a Pascal profiler originally
written by D.E. Knuth. In principle, this should
be portable to any machine. In practice it required
a lot of work to adapt it to VMS. We believe
that the modified profiler can now support the
whole of Standard Pascal and many non-Standard
parts of VMS Pascal; and that it should be more
easily portable than the original. We also provide
a companion utility for generating execution count
files.

Introduction

This article is about a Pascal profiler which was
written by D.E. Knuth and distributed with the
Stanford software. As there seems to be no
published description, we begin by explaining how
it works.

Suppose you have a program-let's call it
Sna i l - that runs unbearably slowly. A profiler is
a supplementary utility that determines how much
time the Sna i l is spending in executing different
portions of its code. What usually happens is
that a typical Sna i l will spend nearly all of its
time executing a small subset of itself. Such a
subset is usually stigmatised by such names as
"bottleneck", "critical section", "innermost loop",
etc. Any serious attempt to speed up a Sna i l
must concentrate on this "critical" section, either
by actually rewriting it to run faster or by rewriting
the higher-level code to make it run less often. or
maybe adopting an entirely new algorithm. Nothing
else is likely to make any significant difference. Thus
a profiler is an essential tool for any programmer
who is concerned about the execution speed of his
or her programs.

Most profilers work by making some special
calls to the operating system, asking it to monitor
the behaviour of the Snai l in some way as it
crawls. Some typical examples are given in [1,2,6].
Knuth's profiler (called "Prof i le") works on an
entirely different principle. It reads the source code
of Sna i l , making a table of the time consumed by

each statement. For each statement in the code,
P ro f i l e estimates the time to be w * f where:

w, the weight, is the time taken to execute the
statement once.
f , the frequency, is the number of times the
statement was executed in a run of the Sna i l
program.

P ro f i l e then prints a listing of the Snai l program
with weight and frequency data added. The weight
of each statement is estimated by parsing the
statement, making reasonable assumptions about
how it might be executed on a typical machine.
If m and n are integers, the Pascal statement:
x : =2. I* (m+n) ; would probably be executed as:
fetch m and n; add; convert to real; multiply;
deposit result in x. The costs of all these primitive
operations are stored as constants in Pro f i l e .
P ro f i l e adds them all together to get the weight,
then multiplies by the frequency to get the total
cost. The frequency is read in from a supplementary
file called a count file. This contains a long list
of numbers; essentially it lists the number of times
every statement in Sna i l was executed in a trial
run.

Thus it appears that P ro f i l e does not require
any special help from the local operating system; so
in principle it should be runnable on any machine.
In practice it is a very different story. The main
obstructions to running P ro f i l e on a new machine
are:

1. No mechanism is provided for generating the
count file.

2. All Pascal compilers implement different lan-
guages - of the same name!

We have been working on the problem of installing
P ro f i l e on the VMS operating system, with the
ulterior aim of eventually producing a portable
version of Pro f i l e . This article describes the
progress made so far. In order to avoid confusion, we
call the altered program VMS-Prof i l e " , reserving
"Prof i le" for Knuth's original.

Generating the Count File

Pro f i l e was originally written for the KL-10 ma-
chine at Stanford, on which D.R.Fuchs altered
the system debugger to make it generate a count
file. This is obviously not a practical option for
other users. Hardly any manufacturers provide
the source of their software and few site managers
would allow ordinary users to alter it. Even if
we could alter the VMS debugger, it could not be
distributed as this would be a breach of copyright.

140 TUGboat, Volume 13 (1992); No. 2

We have therefore written a completely separate
utility called Preprof ile for generating count files.
Preprofile reads the source code of the Snail
program and generates a new program file with
a name like SNAIL-COUNT.PAS. If all goes well,
this will be a valid Pascal program, which does
everything that Snail does and also writes a count
file, called SNAIL.COU. This can then be fed into
VMS-Profi le along with the original SNAIL.PAS
file.

So in order to profile a program on VMS,
you need to do the following: compile and link
VMS-Prof ile and Preprof ile; define commands
to run them; run Preprofile on Snail: compile
and link Snail-count; define further commands to
run Snail-count instead of Snail. Then put the
SNAIL. COU file into the same directory as the source
of Snail and run V M S P r o f ile on Snail and (with
luck) you get a profiled file called SNAIL. PRO.

The basic algorithm of Preprofile is fairly
obvious. At each place in the Snail program file
where Profile will need to see a count. Preprof ile
inserts a piece of code to advance a counter.
Roughly speaking:

while (condztzon) do (statement)
becomes

while (condition) do begin
count [i] : = count [i] + l ;
(statement) end;

In the outermost block of Snail, Preprofile
must declare all the extra variables. At the
start of the statement part of the Snail program,
Preprofile inserts code to set all the counters to
zero. At the end, it inserts code to open the count
file. write all the accumulated counts, then close it.

This mechanism now seems to be working, on
all the Snail programs that we have tried. The
most obvious disadvantage is that the Snail-count
program will clearly run even more slowly than the
original Snail did. The extra time is not itself all
that important, because with luck you never need
to run Snail-count more than once. The real
disadvantage of the extra time is that Snail-count
will never produce any useful information unless
it can be run to completion. Another problem is
that all the extra variables that Preprof ile inserts
into the Snail program must have names different
from all the variables that were there previously.
We have not managed to solve this problem; the
best we can do is to give the extra variables
unpronounceable names like L'ZQRWHZ3XX" which do
not figure prominently in most programmers' code.

Preprofile is a much simpler program than
Profile. Profile has to parse the Snail program
in great detail, but Preprof ile is interested only
in those syntax words of Pascal that affect the flow
of control in Snail. It turned out that many of
the most complicated parts of Profile could be
replaced by a routine that merely copies parts of
the text to the output file.

Improved Output

We have madeseveral changes to VMS-Prof ile to
try to improve the usefulness of its output. First
consider the index of module names. Profile is de-
signed to work with the Stanford WEB system. (We
assume that everybody is familiar with WEB; see [4]
if not.) As TANGLE assembles a WEB program, it in-
serts markers into its output like 1123 :]. . . { : 1231,
indicating the start and end of the replacement text
of each module. If Profile sees these markers, it
assumes that Snail was originally a WEB program
and generates an index. For each module that con-
tains executable code. Profile calculates the total
cost of all the statements in that module. It also
calculates the cost of each module as a percentage
of the total cost of the whole program.

This index of modules is essential. The output
of Profile is inevitably bulky, and without an
index it would be a hopeless task to wade through
an enormous listing in search of the critical sections.
But Profile only makes an index if it sees WEB-style
module markers. Therefore we have altered V M S -
Profile to make it build an index of functions,
in addition to Profile's index of modules. (From
now on "function" will include "procedure".) V M S -
Profile calculates the cost of each function both
as an absolute amount and as a percentage of the
total cost.

We have made minor changes to the format of
the index, to improve its signal-to-noise ratio. Since
the percentage costs calculated by VMS-Prof ile
are inevitably inaccurate, we see no point in giving
them to 6 decimal places. Also we list only those
modules or functions that score at least 2% of the
total cost.

We have also altered the way VMS-Profile
lays out the Snail program. The main output
of Profile is the whole of the Snail program.
with weight and frequency data attached. This is
arranged in columns like this:

(statement) (wezght) (frequency)

In VMS-Prof ile, we moved the weight and fre-
quency columns to the left hand side. This change
seems ridiculously trivial, but is actually important.

TUGboat, Volume 13 (1992), KO. 2 141

The original layout has the disadvantage that the
statement has to fit into a fixed width. When
the statement is indented, the width is further re-
duced. The effect is that P ro f i l e imposes a limit
of 62 - k on the length of quoted strings in the
Sna i l program, where Ic is the current amount of
indentation. This is illogical because P ro f i l e is
supposed to work with TANGLE and TANGLE'S limit
is 69. If this limit is violated, P ro f i l e stops with
a fatal error. VMS-Prof i l e allows a much larger
limit; if it sees an over-long string it merely splits
it, so the output is essentially undamaged. The
new layout means that a statement can now spread
out to any width; the output file is much shorter
because it does not need so much padding; we can
add a column for weight * frequency (which is the
data the user actually needs).

One of the methods that Knuth used for
debugging was the TRIP test [5 ,3] . This
is a special input file containing many unusual
constructions, intended to exercise the entire TEX
program. He found that this is a powerful device
for revealing obscure bugs in a program, after the
obvious bugs have been fixed and the program
seems to be working. In order to help with this
method of debugging, VMS-Prof i l e prints a list of
the line numbers of executable statements that did
not get executed in the trial run.

The Many-Languages Problem

This problem is compounded by the fact that
P ro f i l e uses a rather simple-minded top-down
parsing algorithm. It is well known that such
parsing methods do not work well on programs
that have syntax errors. In theory this should not
matter because Sna i l has to be working before it
makes any sense to try to profile it. In practice,
P ro f i l e runs into trouble as soon as you try to
move it t o another machine, say from Machine A
to Machine B. Every construction in B-Pascal that
is not in A-Pascal is seen by P ro f i l e as a syntax
error. The usual result is that after a little while,
P ro f i l e becomes totally confused and loses track
of the boundaries between statements in the Sna i l
program. I t is therefore essential to adapt P ro f i l e
to read B-Pascal before it can be used on the new
machine.

Of course we can always try to make ad-hoc
changes to P r o f i l e to support this or that feature
of the new language, but this approach produces
masses of bugs. Even with a debug-help procedure
(based on the one in l&X) it is a difficult business
to adapt P r o f i l e to a new system. We believe that

we have managed to make VMS-Prof l l e support
the whole of Standard Pascal and many of the more
accessible features of VMS Pascal. But we can never
be sure that we have succeeded. There is always
the danger that some unexpected (but perfectly
valid) combination of Pascal syntax will reveal
another bug. We believe that it will require a great
deal of effort to produce a satisfactory solution of
the many-languages problem. Meanwhile, neither
P ro f i l e nor VMS-Profile can be regarded as
portable.

The following examples will show some of the
difficulty. Consider what happens when Pro f i l e
reads a variable declaration, say

var horse, dog, goat : r e a l ;

P ro f i l e scans the list of names, then the type, then
it sets up structures in its memory so that it will in
future recognise a "horse" when it sees one. Now
suppose that horse was previously declared in an
outer block. Then Pro f i l e again does the obvious
thing: it saves the previous definition of horse
on a stack. When the current block is exited the
previous definition will be un-saved. Now suppose
the definition came in a procedure header, say:

procedure hunt(horse, fox: in teger ; yak:
r e a l) ;

Then P ro f i l e again knows what to do: it first
defines the parameters horse, fox, and yak: then
it defines the procedure itself.

All this is quite straightforward in principle;
the details are not necessary here. Now consider:
what must P ro f i l e do when it reads the word
"forward"? If horse was defined in an outer block,
that definition must be recovered from the stack.
But also the new definition of horse as a parameter
of hunt must be saved somewhere so that P ro f i l e
will know what to do with horse when scanning the
definition of hunt. This definition cannot be saved
on the stack because the current stack frame will be
erased by the time we reach the definition of hunt.
It follows that we have to assemble an entirely new
structure to represent a procedure header in order
to handle forward declared procedures before they
have been defined.

In VMS Pascal the formal parameters of func-
tions can have default values. In the previous
example, suppose that horse and fox had been de-
clared with default values. Then when the function
is called you can omit any parameters with defaults
and pass the others by explicit assignment. as in:
hunt (yak : =4). The library procedures of VMS
Pascal make extensive use of this feature.

142 TUGboat, Volume 13 (1992), No. 2

The VMS versions of TEX and METAFONT use
parts of the VMS system library. In order to handle
these programs VMS-Prof i l e must read the library
header file (called " s t a r l e t .pas"). This file is a
monster, nearly three times as large as TEX. PAS.
We had to increase the size of all the arrays in
VMS-Prof i l e to accommodate all the data; in turn
this forced us to use long numbers to address these
arrays because 16-bit numbers are not large enough.

It is clear that adapting P ro f i l e to another
machine is not just a simple matter of adapting its
system-dependent procedures to the eccentricities
of a new compiler. Many of the internal struc-
tures have to be redesigned. These structures are
represented by linked lists. It is terribly easy for list-
processing programs to become messy, and messy
programming is utterly abhorrent to the spirit of
the WEB language. It is an accepted convention
that any respectable WEB program must contain a
clear explanation of how it is supposed to work.
There seem to be two main difficulties that must
be overcome in order to write a clean program
that does list-processing. First, it is impossible to
specify the structure of a complicated list in words.
We need an easily-readable notation. We have
therefore included in VMS-Prof i l e the beginnings
of a suite of macros for this purpose. These
macros are no use for complicated lists; even so.
they make a valuable contribution to the clarity of
VMS-Prof i l e . The Appendix at the end shows
some examples.

The second main difficulty of list-processing is
that Pascal has no suitable primitives; so every
operation needs half-a-dozen statements. We have
therefore written a set of WEB macros for simple list
operations.

Although the many-languages problem is un-
solved, we have managed to solve a small part of it.
VMS Pascal provides a great many non-Standard
predeclared functions. Some of these have weird
syntax. The most extreme example is the open
procedure, which links a disk file to a Pascal file
variable. This procedure is both complicated and
important; i t is difficult to imagine how any serious
programmer in VMS Pascal could avoid using it.
Its declaration is something like this:

procedure open(fi1e-variab1e:file;
f i le-name:S-typ:=";
history:H-typ:=new;
record_length:integer:=132;
access-method:A-typ:=sequential;
record-type:R-typ:=variable;
carriage-contro1:C-typ:=list;

organization:O-typ:=sequential;
disposition:D-typ:=save;
file-sharing:W-typ:=none;
funct ion user-action:integer:=none;
defau1t:S-typ:=";
error:E-typ:=message); extern ;

where S-typ can be any character string type and
H-typ, etc., are enumerated types whose values are
here immaterial. (The true definition of open is even
more complicated than this simplified paraphrase
suggests; it seems to be impossible to express this
in Pascal.) In order to handle these predeclared
functions, VMS-Prof i l e must assemble suitable
structures in memory to represent their headers. It
would be an unbearably long and error-prone task
to do this by hand. The only tolerable method is to
write the declarations of these functions into a file
and make VMS-Prof i l e read them before it reads
the Sna i l program itself.

For this purpose. we use the pool file mechanism
of the WEB language. This is a most valuable feature
of WEB which deserves to be far more widely used
than it is at present. We have yet to see any
large Pascal program that could not be improved
by judicious use of this mechanism. It was invented
by Knuth to circumvent the difficulty that Standard
Pascal has no satisfactory mechanism for handling
character strings. When TANGLE is assembling a
WEB program. if it reads a string in double quotes, it
writes that string into a supplementary file called a
pool file. The idea is that the Tangled program can
then read all these strings from its pool file into its
memory. So we insert all the predeclarations into
the VMS-PROFILE . WEB file. When VMS-Prof i l e
starts up it reads the pool file before it reads the
Sna i l file. Here are some sample definitions:

declare("const t r u e = l ; f alse=O; " ,
"maxint=2147483647;minint=-maxint;",
"minchar=O ;maxchar=255 ; ,
l1type boolean=f a l s e . . t r u e ; " ,
I1integer=minint..maxint;",
I1char=minchar. .machar ; I' ,
I1text=f i l e of char; ")

The declarations are written in the usual Pascal
form; they may extend over several lines and each
line must be enclosed in double quotes. Then
dec lare must be called on these lines. Several
lines may be declared at once; then they must
be separated by commas to keep TANGLE happy.
Procedures and functions must have just the header,
followed by "extern". For comparison, here is part
of the equivalent code from Pro f i l e :

TCGboat, Volume 13 (1992), No. 2

char-loc : =get-avail; If this comment is seen, then the number is assumed
info (char-loc) :=char-type; - to be the cost of the function. In this respect VMS-
int-loc:=get-avail; Profile is inferior to Profile, because in Profile
info(int-loc):=int-type; all the costs are tidily collected together in one place.
p:=get-avail; link(int-loc):=p; We think the improvement in clarity outweighs the
q:=get-avail; val (q) : =-max-int ; price.
info(p):=q; q:=get-avail;
val(q) :=max-int ; link(p) : =q; Future Developments
bool-loc:=get-avail;
info(boo1-loc):=int-type;
p:=get-avail; link(boo1-loc):=p;
zero-loc:=get-avail; val(zero-loc):=O;
info(p):=zero-loc; one-loc:=get-avail;
val(one-loc):=l; link(p):=one-loc;
id5(llf I!) (!la") (Illll) (Us") (lie!!)

(bool-const) (0) ;
id4("tH) ("r") ("u") ("e") (bool-const) (1) ;
p:=get-avail; val(p):=max-int;
id6(llmll) (Mall) (l l x l l) ("ill) (l l n ! l) (lltll)

(int-const) (p) ;
id7(llill) (l l n l l) (l l t l l) (Well) (llgfl) (Hell) (llrN)

(def ined-type) (int-loc) ;
id7(llbll) (Uoll) (UoI l) (Ill") (Me") (Mal l) (Ifn")

(def ined-type) (bool-loc) ;

And here is how it all works. Declare is a
WEB macro with no replacement text. When TANGLE
reads a declare, it first evaluates the argument. As
this is a string in double quotes, it copies the string
into the pool file. Then it evaluates the declare
and solemnly puts nothing into the Pascal file.
Then VMS-Profi le reads the pool file and parses
the declarations as if they were part of the Snail
file itself. Where functions use non-standard syntax
(like write and open above) we have made some
ad-hoc changes to VMS-Pro f ile's parsing routines
to support these.

We believe that this mechanism is much cleaner
than the previous one, as you can actually read
the declarations. It does have one unfortunate
consequence; in order for VMS-Prof ile to allow for
the execution time of these predeclared functions,
we must specify these times. This is done using
Profile's "change-weight" mechanism. Recall that
the weight of a statement is the estimated time
to run it once. If Profile gets this wrong, you
can rectify this by adding a so called "change-
weight" comment, which looks like this: {+1001.
This means "add 100 units to the cost of the
current statement". In VMS-Prof ile you can add
change-weight comments to external declarations.
thus:

declare("function sin(x:real):real;",
"extern{+lOO); ")

The current version of VMS-Prof ile contains sev-
eral problems besides those mentioned above. The
first concerns the accuracy of the calculated profile.
Ideally, when moving Profile to a new machine,
one ought to calibrate it by measuring the time
taken to do all the primitive operations and writing
these times into the table of costs in the program.
This would be a tremendously long and messy job.
and probably not worth doing. Given that V M S -
Profile works by examining the source of Snail, it
cannot possibly have as close a contact with reality
as a profiler that actually monitors the crawling
Snail. On the other hand an accurate profile is
neither needed nor possible. Any modern operating
system is doing several jobs at once: so the time
taken for a given task will vary according to the - -
burden of other tasks. If a profiler gives a useful
result, that result will be that "function X is using
10 times as much time as everything else". Since
the truth is inevitably fuzzy, we believe that any
calculated profile within a factor of 2 is probably
good enough for practical purposes.

When discussing Profile's index, we said that
Profile produces a list of all the modules in Snail
and their total costs, and slurred over the question
of how this is actually done. There are two ways
of doing this. If M is a module, then its explzczt
cost is defined as the total cost of the statements
actually contained in M. But WEB modules may be
nested to any depth. So we can also define the
zmplzczt cost of a module. The implicit cost of
module M is the total cost of the statements in M and
also all modules directly or indirectly included in M.
Roughly speaking, the explicit cost of a module is
the amount of time you might save by rewriting its
code to run infinitely fast: the implicit cost is what
you might save if you could bypass that module
altogether. Profile lists all the modules in Snail,
giving both their explicit and implicit costs.

When VMS-Proflle calculates its index of
functions, it can only calculate explicit costs. The
explicit cost of a function F is the (estimated)
amount of time used by the code that is actually
part of F, ignoring any time used by functions
called by F. The only way we could estimate an

TUGboat, Volume 13 (1992), No. 2

implicit cost of F would be by assuming that every
invocation of every function uses the same time.
(This assumption is clearly false, but VMS-Prof i l e
has no way to get more accurate information.)

Suppose that function F calls function G q
times. Then we must add q * cln to the implicit
cost of F, where c is the cost of G and n is the
total number of times G has been called. This
simple-minded approach fails when functions call
one another recursively. In order to find implicit
costs, VMS-Prof i l e would have to solve a set of
linear equations. It is easy to prove that the matrix
of coefficients is nonsingular but ill conditioned. We
have not tackled the problems of assembling these
equations or of finding a suitable method for solving
them.

In conclusion, we believe that Knuth's profiler
is potentially a useful program, but it cannot realise
its full potential until it is made portable. Copies of

VMS-Prof i l e and Preprof i l e have been submit-
ted to the archives at Aston, with a suggested direc-
tory name " [t ex-archive . u t i l s . vms-prof i l e l " .
They may be freely copied, "as is", on condition
that no warranty is expressed or implied.

References

1. M. Bishop, Profiling under UNIX by patch-
zng, Softw. Pract. Exp., 17, 729-739, (1987).

2. T. Cargill and B. Locanthi, Cheap hardware
support for software debugging and profiling, Com-
puting Architecture News, 15 (5) , 82-83, (1987).

3. D.E.Knuth, The Errors of m, Softw.
Pract. Exp., 19, 607-686, (1983).

4. D.E. Knuth, Lzterate Programming, Comput.
J., 27, 97-111, (1984).

5 . D.E. Knuth, A torture test for QX, Stanford
Comput. Scz. Report STAN-CS-1027, Nov. 1984.

6. B. Plattner and J. Nievergelt, Monitorzng
program executzon: a survey, Computer, 14, 76-93.
(1981).

Appendix 1

Here we give some examples of the linked-list macros mentioned earlier. There are some errors of
mis-alignment, which we regard as not worth fixing. A Pascal array type is represented by the structure:

I "array" I 1-/]-basetype
and multi-dimensional arrays by: -

I "array" / 1-1 tindexl 1 1-1 "array" I 1-1 tindex2 I 1 . . . -basetype.
A record type is represented by

/ "record" / I ---+ I ff ieldl I I - / tf ield2 I 1 . . . - / tf ieldn 1 null 1
where each pointer f i e l d i points to I name 1 type].
Finally, a function declaration is represented by

I tlfunctionll I I - I tresult I 1 -+ / - mfP2 . . . - [tPn 1 null /
where PI, etc., correspond to the parameters. For each parameter, PI points to:

PI-+/-I mechanism I J-type.
While a list is being built, it looks like this:

This structure is non-intuitive, but it works. The chief booby-trap is that you must remember to remove
or bypass the leading cell before starting to extract data from the list.

Appendix 2

This is the source for Appendix 1, with most of the plain text deleted. First, the underlying macros:

% T h i s one p u t s a box around i t s argument; based on t h e
% ' c o n t r o l sequence token' macro i n TeXbook

TUGboat, Volume 13 (1992), No. 2

% Partitioned boxes for linked lists

% Pascal arrays:

\centerlineC\leftbox {"arrayl')\TO\leftbox C\-indexl)\TO
\leftbox C1'array")\TO \leftbox I\-index2) \dots\TO C\tt basetype).)

% Record type:

\centerlineC\leftbox {"record")\TO\leftbox {\̂ fieldl)\TO
\leftbox (\-field2)\dots\TO\dbox {\̂fieldn){null))
\noindent where each pointer (\tt fieldi) points eo \dbox CnameHtype).

\noindent Finally, a function declaration is represented by

For each parameter, (\tt PI) points to:

\centerlineCC\tt Pl)\TO \leftbox(name)\TO \leftbox{mechanism)\TO C\tt type).

% List structure:

o R.M.Damerel1
Maths Dept,
Royal Holloway & Bedford New College
Egham, Surrey, U.K.
Janet: uhah208@uk. ac . ulcc .pluto

TUGboat, Volume 13 (1992), No. 2

Fonts

Arrows for Technical Drawings

David Salomon

Introduction

A general note: Square brackets are used through-
out this article to refer to The m b o o k . Thus [437]
refers to page 437.

Arrows, both vertical and horizontal, are com-
mon in technical diagrams. Unfortunately, the ar-
rows available in (\r ightarrow, \Rightarrow,
\longrightarrow 14371, & \rightarrowf ill [226])
are of limited use. The arrowheads are available in
only one size and style, they already have short rules
attached and, as the diagrams below show, they are
inconveniently positioned in their bounding boxes.

m m
The left and right arrows are shorter than their

bounding boxes, and are not vertically centered in
the boxes. The up and down arrows are narrower
than their boxes, and have depths (of approximately
1.944pt). As a result, the simple construct

\def\vrulefill{\leaders\vrule\vfill)
\vbox to25pt(\offinterlineskip

\hboxC\uparrow)\vrulef ill
\hboxi\downarrow))

creates *

'1
and something more complicated is needed to align
the rule with the arrows. Also the vertical size
of the construction above is 26.944pt, not 25pt,
because of the depth of the downarrow. Similarly,
the result of

\hbox to25pt{\leftarrow%
\hrulefill\rightarrow)

is
+----+

Also, since each arrow is about 8pt long,
very short double arrows are impossible to create.
Something such as

\hbox tolOpt{\leftarrow%
\hrulefill\rightarrow)

causes an 'overfull box'.
offers more arrows in its l i n e font. They

can point in quite a few directions, but there is only
one style.

Description of the arrowheads

To satisfy my personal needs. I decided to develop
a font for arrowheads that will be well documented
and easy to use, yet general enough to produce
arrowheads of many shapes. An important require-
ment was that the arrowheads be easy to place at
the tips of rules. Since !I$X does not have diagonal
rules, only horizontal and vertical arrowheads were
developed. The methods used here, however, can
easily be extended for diagonal arrowheads.

The discussion below assumes a right-pointing
arrowhead, but the results can easily be applied to
the three other directions. A general arrowhead
(see Figure 1) is defined by five points, zl . . . z5,
of which z4 is the origin, and zs is a reflection of
z2 (about the horizontal line at height .5ruledim).
The two front edges are curved, the two back ones
are straight, and there is a flat area at the base, to
attach a rule. The exact shape of the arrowhead
depends on the following parameters:

wd is the distance from the tip to the base of
the arrowhead. The bounding box has width wd.

t a i l is the distance from the base to the ends
of the wings. The total width of the arrowhead is,
therefore, wd-ftai l , but only wd units are included
in the bounding box; the rest sticks out of it.
Negative values of t a i l produce arrowheads shaped
like +, and large positive values (>wd) create
arrowheads shaped like>. t a i l , therefore, should
normally vary in the narrow range 0 . . . wd.

h t is the (approximate) total height of the
arrowhead. The bounding box has height .5ht
(and zero depth). Very tall arrowheads, such as
), are rarely used, so h t should normally be less
than the total width of the arrowhead. Because of
the special way arrows are used (see below), the
bounding box has no depth. As a result, the left-
and right-pointing arrowheads (and, normally, the
upward one as well) stick below their boxes.

The height of a standard \hrule is 0.4pt, so
it makes sense to center the arrowhead 0.2pt above
the baseline. However, to allow for any size rule,
there is a parameter, ruledim, whose value should
be the height of the rule to which the arrowhead
is going to be attached. The arrowhead is centered
.5ruledim above the baseline.

Points zg, zq guarantee that, regardless of the
shape of the arrowhead, there will be a flat area of
size ruledim at the base of the arrowhead, so it can
be smoothly connected to the rule. A close look
at the code shows that the height of the arrowhead
(z2 - z5) is ht-ruledim so, in order to end up with
something that looks like an arrowhead, ht should

TUGboat, Volume 13 (1992), No. 2

be greater than ruledim. (In rare cases, such as the
'pacman' arrowhead below, a large negative value
of curv can increase the height of the arrowhead
above this value.)

The curv parameter can be used to curve the
front edge of the arrowhead. Its value (in degrees)
is added to the direction of the top front edge,
and subtracted from that of the bottom front edge.
Thus positive values of curv result in arrcwheads
looking like ,, and negative values, in arrowheads
like ,. As a result, negative values of curv would
rarely be used. The maximum value of curv (see
discussion below) depends on the size and shape of
the arrowhead, and is typically between 20" and
30".

outlin is a boolean parameter. If it is true,
the arrowhead is drawn as an outline>, using the
procedure suggested in [Ex. 13.231; otherwise, the
arrowhead is solid. For high resolution output
devices, Doug Henderson's methods (ref. 1) create
better results.

The source code

In a complete arrowhead font, all the characters
are arrowheads, differing only in orientation and
parameters. I t is therefore natural to define the
arrowheads in terms of procedures. I have found it
convenient to use two procedures, one for leftlright
arrowheads and the other for up/down ones. The
METAFONT code of the procedures is as follows.

path outerr;
def outlne = % Outlining, see Ex. 13.23
cull currentpicture keeping (1,infinity);
picture v; v:=currentpicture;
cull currentpicture keeping (1,l)
withweight 3;

addto currentpicture also v
- v shifted right
- v shifted left
- v shifted up
- v shifted down;

cull currentpicture keeping (1,4)
enddef ;

% procedure for right left arrowheads
def lr-head(text lr) =
R:=floor ruledim; if not odd R: R:=R+1; fi;
zl=(w, .5R) ; z2=(-tai1,h) ;
z3= (0,2yl) ; z4=origin; z5=(x2 ,R-y2) ;
sAngle:=angle(z2-zl)+curv;
e~ngle:=angle(zl-25)-curv;
outerr:=zl(dir sAngle)..z2--23--
24--z5..{dir eAng1e)cycle;

if lr="r":
fill outerr; if outlin: outlne; fi

elseif lr="l" :
fill outerr

reflectedabout ((0,0), (0,l))
shif ted(w ,0) ;

if outlin: outlne; fi

Figure 1. Right arrowhead

148 TUGboat, Volume 13 (1992), No. 2

else: errmessage("wrong parameter,
should be '1' or 'r'I1);

f i
enddef ;

% procedure for up down arrowheads
def ud-head(text ud) =
R:=floor ruledim; if not odd R: R:=R+I; fi;
zl=(.5R,h) ; z2=(w,-tail) ;
z3=(2x1,0); z4=(0,0); z5=(R-x2,y2);
sAngle:=angle(z2-21)-curv;
eAngle:=angle(zl-z5)+curv;
outerr:=zl{dir sAngle)..z2--23--
24--z5..{dir eAng1e)cycle;

if ud="u" :

fill outerr; if outlin: outlne; fi
elseif ud="dtl :
fill out err

reflectedabout ((O,O), (1,O))
shifted(0 ,h) ;

if outlin: outlne; fi
else: errmessage("! Wrong parameter,
should be 'u' or 'd"');

1 1
I I

%
Following this, arrowheads can be created and
placed in the font by, e.g.:

ruledim#:=.4pt#; outlin:=false;
ht#:=8pt#; wd#:=7pt#; tail#:=-2pt#; curv:=O;
def ine-pixels (ht , wd , tail, ruledim) ;

beginchar ("R" ,wd#, .5ht#, 0) ; "right" ;
lr-head("rU) ;
endchar ;

beginchar ("L" , wd#, .5ht#, 0) ; "left " ;
lr-head("ln) ;
endchar ;

beginchar ("U" , .5ht# ,wd#, 0) ; "up" ;
ud-head("ul') ;
endchar ;

beginchar (I'D", .5ht#, wd#, 0) ; "down" ;
ud-head("dn) ;
endchar ;

Note that it is also possible to create a hollow
arrowhead by:
1. Drawing it with a 2-pixel wide pen. This may
give better results in low resolution output devices.

if outlin: pickup pensquare scaled 2;
draw outerr; f i

2. After creating the arrowhead, a smaller arrow-
head is erased inside. By changing the scale and
shift amounts, special shapes can be created.

path iner
fill outerr
iner:=outerr;
if outlin: erase fill iner scaled .8

shifted(.lxi,.2yl); fi

An an example, the values

ht#:=8pt#; wd#:=5pt#; tail#:=2pt#;
curv:=9; ruledim#:=.4pt#;

produce, when outlin: =f alse ; and> when
outlin:=true;.

Improving the digitization

The only subtle point about the procedures above
is the equation for z l . Originally this equation
was 'zi= (w , .5ruledim) ; ' but this resulted in ar-
rowheads with flat tips, two pixels tall. To get
a sharp, one-pixel tip, the yl coordinate should
be an integer plus 112 (see Ex. 24.7 in The
METRFONT~OO~). This was obtained by comput-
ingLR:=floor ruledim; if not odd R: R:=R+i;
f i ; ' and setting 'zl=(w, .5R) ; '. (R is the odd
integer closest to ruledim, so .5R is an integer
plus 112.) To end up with a symmetric arrow-
head, the equation for zs was also changed from
'z5= (x2 ,ruledim-y2) ; ' to 'z5= (x2 ,R-y2) ; '. NO-
tice that the base of the arrowhead (the distance
between points 23, z4) is now R and not ruledim,
but the difference is at most one pixel, and is not
noticeable. Notice also that the whole thing may
not be necessary in a high-resolution output device,
but in a 300dpi laser printer it significantly improves
the appearance of the arrowhead (see Fig. 2).

Special cases

The top front edge of the arrowhead should go
in the general direction of the top left point. If
that direction is changed too much (by a large
value of curv), funny results-and, sometimes,
error messages-are obtained. As an example, the
following set of parameters

produc3 -.
Some combinations of the parameters create

interesting (and, possibly, even useful) shapes; even
though they don't look like arrows. A pacman c i s
a left arrowhead created by:

TUGboat, Volume 13 (1992), No. 2

ruledim#:=Opt#; outlin:=false; ht#:=2pt#;
wd#:=4pt#; tail#:=4pt#; curv:=-85;

A square diamond +, is created by: ht#:=lOpt#;
wd#:=IOpt#; tail#:=-5pt#; curv:=O;

A circular wedge 4, is the result of: ht# : =lOpt# ;
wd#:=IOpt#; tail#:=-7pt#; curv:=-30;

The examples shown here make it clear that
the arrowheads are not meant to be used with
text. Specifically, they don't have any depth, which
interferes with the normal interline spacing, and
they stick out of their boxes, which messes up the
interword spacing.

Using the arrowheads

The arrowheads are meant to be used in diagrams,
stuck at the ends of rules. A horizontal double
arrow of size .5in 4-+ is obtained by \hbox
to. 5in(\ar l\hrulef ill r). A vertical arrow is
also easy to create by means of vertical leaders. The
ones shown here:

have been produced by

\def\vrulefillC\leaders\vrule\vfill)
\vbox to30pt(\offinterlineskip

\hbox(\ar u~\vrulef i l l \hbox~\ar dl)

where positions 'u', 'd' of font \ar are occupied by
up and down arrowheads with a base 0.4pt wide,
and positions 'U', 'Dl have similar arrowheads with
lpt wide bases.

As an example, the well known diagram [63] is
duplicated here, using our arrowheads.

depth

I+
J width -)

Bibliography

1. Henderson, D. Outline fonts with METRFONT,
TUGboat 10, no. 1, 36-38, April 1989.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxsBms.secs.csun.edu

Figure 2. Lowres simulation

TUGboat, Volume 13 (1992)) No. 2

I Graphics I
A Solution to the Color Separation Problem

Daniel Levin

Color is one of the hallmarks of modern publishing,
yet makes no provisions for it. This is
unfortunate, although understandable. Until the
age of desktop publishing, colors were not part of
the domain of typesetters. If a print job involved
colors, the help of others was required: graphic
artists to do the paste-up, photographers to do the
separations, press operators to mix and apply the
ink.

While is an exceptional computerized
typesetter, it has definitely not kept up with other
programs in terms of color capabilities. In the 7&X
community, there is much concern that the program
is losing its position as the premier typesetter for
books and journals. I believe this process will not
only continue, but accelerate, unless adapts
to the changes that have taken place on desktops
and in printshops around the world. The changes
are centered around new technology, such as color
scanners and printers. But that is not all: the
greatest change may be in people's expectations of
what a typeset document should look like.

Perhaps some will argue that color is not
an important issue, since the needs are different
between academic presses, where m has the upper
hand, and commercial operations, where desktop
publishing is taking over. The differences are not
so great, however. The argument may be based on
the view that color is just an embellishment and is
best left to graphic artists and photographers. In
my opinion, such a view patronizes the arts and
constrains the written word.

Color is helpful, if not essential, in many
publications. It can highlight parts of a text,
clarify certain points, and distinguish phrases and
examples. Who has not seen a bible annotated
or a textbook printed with answers in red? Who
has not written a paper and wished that tables
and graphs could have multiple colors? Who has
not read a book or magazine and been drawn in
by colorful headlines and diagrams, not to mention
advertisements? Color printing has arrived and
its role is widening, to bulletins, newspapers, even
scholarly journals.

This article does not deal with all of the issues
surrounding color. Instead, it focuses on just one:
how to separate colors-or more specifically, how

to apply different colors to characters and rules.
Also. while the title reads "A Solution.. .", the
article is more of a proposed solution. It mentions
a superset of m called Vector m (or V w) ,
which uses scalable font technology.' So as to avoid
the debate about names, we should think of V w ' s
newer capabilities as proposed extensions to m . 2

Another focal-point of this article is on a certain
type of publication: mathematics textbooks. The
discussion is limited not only because of space but
because of the author's experience in that field.
Obviously there are other important uses of color,
and those deserve careful attention before one can
really claim to have solved the color separation
problem. In particular, there needs to be an agreed-
upon model of color that is convenient for both
authors and publishers. The model must work
with different tints or saturation levels; it should
accept both process and spot colors; and it should
allow colors to be layered (printed on top of one
another) or "cancel out" those underneath. These
are interesting topics, but they will have to be dealt
with at another time.3

1. The traditional approach

As mentioned at the outset, does not make
any special provisions for color. You can say that it
is a beautiful and flexible system, but when you get
right down to it, everything is done in black and
white. Nevertheless, there are two possibilities open
to someone who wants to create a document with
more than one color. They are not very satisfactory
methods, but they do work in certain situations.
The first method involves 'hboxes' and 'vboxes' and
makes use of m ' s \phantom command; the second
relies on the METAFONT program to create invisible
fonts.

a. Boxes. This method involves putting small
amounts of text in boxes, and then keeping or
discarding the boxes, depending on whether they
match a given color. For instance, suppose you
wanted to print a headline in blue and a short
paragraph in black. That would require putting the
headline in an 'hbox' and the paragraph in a 'vbox'.
Then, to separate colors, you process the document
twice, each time hiding one of the objects.

Let's say you wanted to print the headline and
hide the paragraph. That is accomplished by typing
\phantom{\vbox{paragraph material)). To do
the reverse, you remove the \phantom command
hom the paragraph (but keep the paragraph in
its 'vbox') and type \phantom{\hbox{headline)).
In both cases, the \phantom command measures
the enclosed box, discards it, and puts an empty,

TUGboat, Volume 13 (1992), No. 2 151

similarly-sized box in its place. All of the boxes are
necessary. They assure that the document will be
laid out the same way each time it is processed.

The box method works reasonably well if it
is done in vertical mode and with short amounts
of text (or in horizontal mode with single words
or characters). It does, however, have serious
limitations. First, since all text is boxed. there is
no way for page breaks to occur in the middle of
a paragraph. Second, any phrase inside an 'hbox'
is typeset at its natural width; no glue is allowed
to stretch or shrink. Third, rn spends extra time
building and sizing boxes. Fourth, the method gets
increasingly complicated with each additional color.

A fifth problem relates to the design and
proofreading stages: there is no way to approximate
how colors look next to each other. Your choices
are to print colors one at a time or altogether
(presumably in black). Referring to the previous
example, it would be nice if you could print the
paragraph normally and the headline at, say, 50%
gray - in other words, give the headline a rough
approximation to blue. (It would be even nicer,
if one has a specially-equipped printer, to see a
document's true colors.) Not being able to see
colors, or at least approximate them, makes page
layout more difficult and color assignment a lot of
guesswork.

b. METAFONT. Instead of putting text in a box
and then discarding it, you can use the METAFONT
program to create 'invisible' fonts. These fonts have
the same dimensions as visible ones, but they have
neither an outline nor a fill- which is to say, they do
not show up in print. By substituting invisible for
visible fonts, you can hide any amount of text. This
method overcomes most of the problems of the box
method; glue can stretch and shrink, and TJ$ can
calculate optimal breakpoints. But it still leaves
you with an 'all or nothing' proposition: either
things are printed in black or they are completely
hidden.

Invisible fonts are often included in I P W and
S l i m packages. They are easy to spot, because
they have an 'I' as the first character of their names
(e.g., the invisible roman font is ICMRIO). If you
can obtain invisible fonts, you may find they are
not a complete set. Fortunately, the method of
creating them is simple. You take a METAFONT
file like CMEXIO .MF and make a copy with the name
ICMEX1O.MF. Then, just before the last line of the
file, type

extra-endchar : =

extra_endchar&"clear i t I ' ;

(so that what you type becomes the second-to-last
line). Then run the file through the METRFONT
program. Everythmg is done as usual, except that
METAFONT erases all character representations;
TFM files and "empty" font files are still created.

When dealing with ordinary text, invisible
fonts are a reasonably effective way to separate
colors. But they do not offer a complete solution.
Surprisingly, they work least well with mathematics,
because they do not hide rules. You see, rules are
not characters, so there is no way to make them
invisible using METAFONT. Even if all fonts are
made invisible, rules still show up as horizontal
bars in fractions and radicals, and as 'overlines' and
L~nder l ine~' .

Perhaps the best thing to do with standard
implementations of TEX is to combine invisible
fonts with the box method (above). If something
involves a horizontal or vertical rule, you simply
put it inside a box and, when the time comes,
hide it using the \phantom command. Fractions,
radicals, underlined words, etc., are always typeset
at their natural width, regardless of whether they
are boxed. So the major problems with boxes do
not apply here.

With a good font scheme and judicious use
of the \phantom command, you can effectively
separate colors. You still run into the proofing and
design problem mentioned earlier, since you cannot
see colors next to each other. Also, you may run
into memory problems, because you need to load
most fonts twice (a visible and invisible version).
And, of course, you must keep many more TFM and
PK files on your system. If you are not bothered by
such things, it is possible- though still difficult -
to print colors one at a time.

2. A newer approach

The V W program offers the best method for
separating colors that this author has seen. As
stated above, Vl&X uses scalable font technology,
which has all kinds of advantages over traditional
bitmapped fonts (not the least of which is a signifi-
cant reduction in the number of files). In addition to
offering limitless font sizes, V'l&X can fill characters
and rules with a variety of patterns and grayscales.
This gives one the capability of separating colors
and simulating them in black and white.4

V w ' s method is straightforward. Using
a \specia l command, you specify a 'fillpattern'
for both characters and rules. The syntax is
\special(F#), where # is a number corresponding
to a particular pattern. V m has 22 built-in

TUGboat, Volume 13 (1992), No. 2

patterns and supplies an editor for creating new
ones. Of special interest are patterns 0 (black),
8 (about 50% gray) and 22 (white). With those
three patterns, you can readily design and print a
two-color document. (To simulate additional colors,
you need to select more patterns.)

a. Implementation. One can think of various
schemes for assigning colors with the \special
command. A simple approach, which also resembles
m ' s \font command, uses the following macros:
\def\color#l(\toksQ={#l)

\afterassignment\colorQ\countQ)
\def \colorQ(\expandaf ter\edef

\the\toksQ~\special~F\the\comtQ))3
Briefly, the \color command matches up a

color with a particular fillpattern. The syntax is
\color(name)=#, where the name is written as a
control-sequence and the number corresponds to a
f i l l~at tern.~ For example, if you wanted to assign
fillpatterns to two colors, blue and black, you could
type \color\blue=8 and \color\black=O. Then,
to typeset characters and rules normally, you give
the command \black. To approximate the other
color, you give the command \blue. Thus the line
\black Something old. \blue

Something new. \black

yields

Something old. Svnzething new.
Note: The second \black command is necessary.
Color changes cannot be confined to a group because
the \special command is inherently global (it sends
messages directly to the device driver).

The previous example illustrates colors side by
side. By now the reader has probably figured out
how to separate them. The trick is to re-define
colors. To be specific, any color that should not be
printed is assigned fillpattern 22 (white). Following
this approach, the lines

result in
0 bluc and gray
I b u a d r y I
I l e n g a I

1. Simplify: (3~y -~) (Qx~y2) iz4 2. Solve using the quadratic formula:
2a2 - 4a - 5 = 0

+I

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose
is always even. x-intercepts are -3 and 3 and which

If the first number is 2a + 1 and the contains the point (0,6).

second is 26 + 1, then the sum is 3 y + 2 - 1 8 = 0
2(a + 6) + 2 or 2(a + 6 + I), which is even.

Figure 1. Black = fillpattern 0 ; Red = fillpattern 0.

1. Simplify: (3 ~ y - ~) (Q x ~ y 2) ;:I+ 2. Solve using the quadratic formula:

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose
is always even. x-intercepts are -3 and 3 and which

If thp Iirsl ilurnbrr 15 t i ! + 1 ar~d thr contains the point (0,6).

second 1s 2b + I , Lhrr~ 1 1 1 ~ zii~n is 31/+ , ? - 1 6 - 0
2(tr + b) + 2 01 2(0 + 6+ L) , wh1c.h ib eben

Figure 2. Black = fillpattern 0 ; Red = fillpattern 8.

TUGboat, Volume 13 (1992)' No. 2

b. Textbook Example. Another, more realistic
example of color separation has to do with school
textbooks. It is customary with teachers' editions
of textbooks to print answers next to problems
(exercises). Usually the answers are printed in
a color other than black, in order to distinguish
them from problems. This is an especially common
practice with mathematics textbooks, and it makes
up a good case study for m. While is superb
at arranging problems and answers, it does require
extensions to handle the color separation.

Let us now consider the situation in a little
more detail. Interestingly, color separation is
not the toughest obstacle to overcome. With
V m ' s \specia l command, as described above,
one can easily assign different colors to problems
and answers. The real task is in positioning
answers next to problems. Ideally, one would like to
automate the process, and be economical about it -
that is to say, put answers as close to problems as
possible. This requires some ingenuity. One needs
to figure out how many lines are in a problem, how
wide is the last line, and whether an answer will fit
in the available space.

In the appendix to this article are some macros
which make reasonably intelligent decisions about
the placement of answers. There are four primary
commands, called \beginproblem, \beginanswer,

\endanswer, and \endproblem. They are used in
the following manner.

\beginproblem
general t ex t (problem)
\beginanswer
general t ex t (answer)
\endanswer
\endproblem
The 'begin' and 'end' commands form boundaries
around problems and answers. Incidentally, the
\beginanswer. . . \endanswer field is optional.

The \beginproblem command serves several
purposes: it assigns a color (normally black),
it numbers problems automatically, and it puts
problems inside 'vboxes' so that they can appear
next to each other. The \beginanswer command
assigns a color (red) and looks at current conditions.
If m is in vertical mode, the answer simply begins
a new paragraph. Otherwise, the answer is put
inside an 'hbox' and the last line of the paragraph
is looked at more closely.

What happens next depends on several things:
the 'hsize' and number of lines in the current
paragraph (h and n), the width of the last line (l) ,
and the width of the answer box (a). Roughly
speaking, if a < h - l , the answer is placed at the
end of the last line of the problem. Otherwise, the
answer is 'unhboxed' and begins a new paragraph.6

1. Simplify: (3 ~ y - ~) (~ x ~ y ~) 2 . Solve using the quadratic formula:
2u2 - 4a - 5 = 0

3. Explain why the sum of two odd numbers 4. Write an equation for the parabola whose
is always even. x-intercepts are -3 and 3 and which

contains the point (0,6).

I

Figure 3. Black = fillpattern 0 ; Red = fillpattern 22.

If the first number is 2a + 1 and the
second is 2b + 1, then the sum is 3 y + x 2 - 1 8 = 0
2(u + b) + 2 or 2(u+ b+ 1), which is even.

Figure 4. Black = fillpattern 22 ; Red = fillpattern 0.

154 TUGboat, Volume 13 (1992), No. 2

There is just one more determination: if the answer
fits on the last line of the problem, and if n > 1,
the answer box is lowered a little bit. This helps to
distinguish the answer from any text which appears
above it.

The effect of the macros can be seen in fig-
ure 1. Notice that problems and answers are given
fillpattern 0 (black). In figures 2-4, the prob-
lems and answers are given different fillpatterns;
in other words, the commands \black and \red
are re-defined. No other changes are made to the
input lines. Finally, notice that all text appears
in exactly the same position, regardless of its color
(or more precisely, its fillpattern). The color sepa-
ration is achieved without any extra boxes or font
assignments, and with very little fuss!

Conclusion

The importance of color in modern publishing has
already been emphasized. The author hopes that
the textbook example shows how useful is a good
color separation scheme. The macros presented in
this article are by no means a complete solution, but
they enable m n i c i a n s to perform many important
tasks. Also, they introduce some ideas about color
that warrant further discussion. Here are three
more points that ought to be debated:

1. The separation of colors is best handled by
device drivers; TEX does not need to be concerned
with the fillpattern of characters and rules. The
only situation where 'l&X may need to be actively
involved is in the layering of colors. For example,
a perfectly adaptable system should allow yellow
letters to be printed on a cyan background, without
the cyan showing through.7

2. A color assignment scheme should be
part of plain TJ$ (or IKQX), so that full-color
documents can be shared between various platforms
and implementations. This can be done in many
different ways, perhaps with a font-like command
(as in this article) or else with a numbering system
(as in \newtoks, \newfam, etc.).

3. Not all device drivers need to be color
capable, but they need to be color aware. Even if
a device is monochrome, it can still simulate colors
with grayscales and other patterns. In short, no
driver should be tripped up by color; it should be
able to turn hues into black and white.

Finally, it is hoped that members of the 7&X
community will join together in developing new
standards for the program, especially in regard to
color. Extensions should not be dismissed out of
hand, as if they were unneeded or contrary to the

goals of 7&X. Rather, they should be looked at real
innovations, or as springboards for improving the
program, or at the very least as a reflection of the
needs of publishers. Sooner or later those needs will
be met by a computer system. Wouldn't it be great
if that system were m ?

Appendix

The textbook macros are relatively easy to follow,
except for \measurelastl ine. This performs some
measurements which are used in the positioning of
an answer (\placeanswerbox). The macro is de-
rived from an example given by Frank ~ i t t e l b a c h . ~
As he indicates, the only way to measure a line is
to go into display mode temporarily. QjX then sets
\predisplaysize equal to the width of the last line
(plus two ems). Simultaneously, \prevgraph is set
to the number of completed lines in the paragraph.

Once the measurements are made, it is nec-
essary to undo the skips and penalties associated
with display mode. This sends TEX back to the end
of the last line, where horizontal (paragraph) mode
can begin again, virtually uninterrupted. There is
one major complication: when TJ$ begins display
mode and then reverses its steps (does an 'unskip'),
the depth of the last line is lost. That is why a
'vrule' is added to the list. It acts like a 'strut'-
in other words, it guarantees that the last line has
the proper depth.

Note: Another fix is needed if an answer is
unusually tall and is placed on the first line of a
problem. In that case, a correction must be made to
the height of the 'vbox' which contains the problem
and answer. That is not difficult to do and is left
to the reader as an exercise.

TUGboat, Volume 13 (1992), No. 2

\def\measurelastline{%
$$\nodisplaylineskip

\global\lastlinenumber=\prevgraf
\dimenQ=\predisplaysize
\advance\dimenQ-2em
\global\lastlinewidth=\dimen@ $$%

\par \unskip \unpenalty
\setboxO=\lastbox
 last linedepth=-\last skip
\vskip-\parskip
\baselineskip=\z@
\lineskiplimit=-\maxdimen
\noindent \hskip\lastlinewidth
\vrule width\zQ height\zQ

depth\lastlinedepth)

V m is a trademark of MicroPress. Inc. See
the listing in TUG Resource Directory, TUG-
boat 12, no. 2, supplement, p. 129.

A similiar point was made by Nelson Beebe in
TUGboat 11, no. 3, p. 335. He noted that
MicroPress "has done very interesting things
with extensions to m," and these should be
studied as "a pilot implementation of some
ideas for W ' s evolution."

Color graphics are something else to consider.
Donald Knuth and others have suggested using
a "grayscale font" to create halftoned pictures.
This is one way to separate colors, as pointed
out by Adrian Clark in TUGboat 12, no. 1.
pp. 157-165. The method, however, requires a
lot of processing power and is device-specific.
Also, it does not help someone who wants to
apply a shade of gray to a regular font.

For a review of V m , see AMS Notzces, 38(2),
February 1991, pp. 105-109. The program
is also discussed by A1 Cameron in Personal
Workstatzon. June 1990.

This is something like the method suggested
by Robert Adams. in TUGboat 11, no. 3.
pp. 405-406. He suggests using commands
such as \black and \red, and tying them into
the Postscript operator setgray.

This approach is not without complications.
For an interesting discussion of line-breaks in
'unhboxed' text, refer to an article by Michael
Downes, TUGboat 11, no. 4.

Knuth implies as much about device drivers:
with the \special command, one can take ad-
vantage of any equipment that might be avail-
able - e.g., "for printing documents in glorious
mn i co lo r " (m b o o k , p. 229). But he also
says the \special command leads to incom-
patibilities. This author agrees completely, and
thinks that is the best argument for extending
m. \special commands-or at least the
explzczt use of \special -can be avoided only
if there emerges a new set of standards for color
printing.

Refer to Mittelbach's article, " E m : Guide-
lines for Future l&,X Extensions." TUGboat 11,
no. 3, p. 344.

156 TUGboat, Volume 13 (1992), No. 2

A style option for rotated objects in U r n

Sehastian Rahtz and Leonor Barroca

Contents inal trigonometry macros came from Jim Walker

History

Usage

Driver-specific macros

Rotation environments
4.1 Sideways
4.2 Rotate

. 4.3 Turn

Rotated tables and figures
5.1 Rotated captions only . .

Trigonometry macros

Examples

List of Figures

1 IVorking out the position of a box
by considering z: y coordinates of five

. vertices 161
2 Rotation of paragraphs between 0

and -320'. 171
3 Rotation of paragraphs between 0

and 320'. 172
4 Turned, normal, and sideways, pic-

tures within a figure 176
5 Figures rotated with 'psfig' 176
6 A pathetically squashed rotated

pussycat 180

List of Tables

1 This is a narrow table, which should
be centred vertically on the final page. 177

2 Grooved Ware and Beaker Features.
their Finds and Radiocarbon Dates . 178

3 Minimum number of individuals: ef-
fect of rotating table and caption sep-

. arately 179

Abstract

This article documents a LATEX style option, 'ro-
tating.sty', which perform all the different sorts of
rotation one might like, including complete figures,
within the context of a PostScript driver.

1 History

Sebastian Rahtz first wrote rotation macros in 1988.
and has been fighting with them since. The orig-

-
(Dept Mathematics, University of South Carolina);
we later borrowed the trigonometry macros in psfig
1.8. This set of macros is a complete overhaul of
the practice of rotated LATEX boxes destined for a
PostScript driver.

We finally decided to clean these macros up and
document them to bare-bones 'doc' standard in or-
der to avoid doing some real work in January 1992.
We must thank Frank Mittelhach and Rainer Schopf
for promoting this style of literate macro writing,
and inspiring the rest of us to patch up our sorry
efforts. We apologize for the fact that we have not
attempted to make these macros compatible with
'plain'. Life is just too short.

A modification was supplied 9/2/92 by A. Ma-
son to handle the Textures driver, chosen with the
\rotdriver{TEXTURES) option. The 'sidewaysfig-
ure' environment was fixed on 17/3/92 after sugges-
tions by Rainer Schopf.

2 Usage

This style option provides three L A W environ-
ments:

sideways prints the contents turned through 90 de-
grees counterclockwise:

turn prints the contents turned through an arbi-
trary angle;

rotate prints the contents turned through an arbi-
trary angle; but does not leave any space for
the result.

A full set of examples are given in section 7. But
now we present the documented code.

3 Driver-specific macros

We try to make this style driver-independent (!) by
isolating all the usage of \spec ia l into one case
statement later, so first we declare dummy values for
the two macros which vary according to the driver.
in case \ r o t d r i v e r is never called, or produces no
results.

This style option (potentially!) supports a variety
of dvi drivers; the user must declare the one to be
used.

TUGboat, Volume 13 (1992), No. 2 157

\rotdriver The user can select the specials that should be used by calling the cornmand
\rotdriverCdrzvername). Possible choices are:

0 DVItoLN03
0 DVItoPS
0 DVIps

e m m
0 Textures

This command can only be used in the preamble of the document. The list of drivers
was created for compatibility with the 'changebar' macros (version 3.0 of November
1991 by Johannes Braams), but the code only exists in this style option for 'dvips'
and 'dvitops'.
The argument should be case-insensitive, so it is turned into a string containing all
uppercase characters. To keep some definitions local, everything is done within a
group.

\def\rotdriver#l{%
\bgroup\edef\next{\def\noexpand\tempa{#l))%

\uppercase\expandafter{\next)%
\def\LN{DVITOLN03)%
\def\DVItoPS{DVITOPS)%
\def\DVIPS{DVIPS)%
\def\emTeX{EMTEX)%
\def\Textures{TEXTURES)%

The choice has to be communicated to the macros later on that will be called from
within \document. For this purpose the control sequence \ ro t@dr ive rse tup is used.
It receives a numeric value using \chardef.

\global\chardef\rotQdriversetup=O
\if x\tempa\LN

\global\chardef\rotmdriversetup=0\fi
\ifx\tempa\DVItoPS

\global\chardef\rotQdriversetup=l\fi
\ifx\tempa\DVIPS

\global\chardef\rotOdriversetup=2\fi
\ifx\tempa\emTeX

\global\chardef\rot@driversetup=3\fi
\ifx\tempa\Textures

\global\chardef\rotQdriversetup=4\fi
\egroup

We use a case statement to define the macros appropriate for each driver. We will
define two commands, \ r o t @ s t a r t and \rot@end, which assume that the macro
\ rot@angle produces the angle of rotation.

\ifcase\rotQdrlversetup

The first case (0) is for 'dvitoln03'. for compatibility with 'changebarsty'; we don't
have access to this. so pass by on the other side.

% case 0
\typeout{WARNING! ****
no specials for LN03 rotation)

\or

First real case. James Clark's 'dvitops'. This has not been well tested with ds-itops;
the figures of rotated paragraphs come out oddly. Dvitops has some unusual ways of

TUGboat, Volume 13 (1992)' No. 2

dealing with Postscript \ spec ia l commands; they are kept in a list and dealt with
all together. Each time you use an effect, you number it as a block.

\rotQcount=l
\def\rot@start{\specialCdvitops: origin

rot\the\rotQcount)%
\specialCdvitops: begin rot\the\rotQcount))%
\def\rotQend{\special{dvitops: end)%
\special{dvitops: rotate rot\the\rotQcomt \space

\the\rotQangle)%
\global\advance\rotQcount byl)%
\or

Case 2, Rokicki's dvips (this code works with version 5.47). We simply emit some
literal PostScript (code copied from Rokicki's 'rotate.sty').

\def\rotQstart{\specialCps:gsave currentpoint
currentpoint translate \the\rot@angle\space
rotate neg exch neg exch translate))%
\def\rotGend{\special{ps:cnrrentpoint
grestore moveto))%

To be consistent, lets allow for e m m one day performing here as well

\or % case 3, emTeX
\typeout{WARNING ! ***

emTeX does no rotation at this time)

Lastly sofar. one for a Mac w. The Textures PostScript code has been modified
from code provided by:

Charles Karney Phone: +l 609 243 2607
Plasma Physics Laboratory Fax: +1 609 243 2662
Princeton University MFEnet: Karney@PPC.NIFEnet
P O Box 451 Internet: Karney@Princeton.edu
Princeton. NJ 08543-0451 Bitnet: KarneyPPC.MFEnetQANLVhlS.Bitnet

The following assumptions are made about the PostScript that Textures generates:

1. A single transform is used for all Textures output.
2. The Postscript \ spec ia l is bracketed by gsave . . . grestore.
3. Immediately after the gsave, the coordinate system is translated so the origin

is at the current point; and the y axis is flipped. (The y-axis isn't flipped any
more. . . rotations are clockwise. A.M.)

4. Textures doesn't leave anything on the stack for long periods. (This simplifies
restoring the default coordinate system.)

\or
\typeout{Textures rotation)
\def\rotGstart{\special(postscript

0 0 transform % Get current location in device
% coordinates.

grestore % Undoes Textures gsave.
matrix currentmatrix % Save current transform on stack for use

% by \Gunrotate.
3 1 roll % Put transform at back of current location.
itransf orm % Current location in Textures coords
dup 3 -1 roll % Duplicate the location; x y ==> x y x y
dup 4 1 roll exch
translate % Translate origin to current location

% 1 -1 scale % Flip y coordinate
\the\rotQangle\space rotate % Rotate by \Grotation

TUGboat, Volume 13 (1992), No. 2

% 1 -1 s c a l e % Unf l i p y coordinate
neg exch neg exch t r a n s l a t e % Trans la te o r i g i n back
gsave)) % To match g res to re

g res to re
setmatr ix

% Undoes Textures gsave
% Set cur rent t ransform t o value saved on
% s t a c k . (Hopefully, i t ' s s t i l l t h e r e .)
% To match g res to re

unknown d r i v e r - no ro ta t ion)
\f i

3

Finaly. we will need boxes to take copies of what we are rotating. and will need some
registers to store sizes and angles.

4 Rotation environments

The basic idea is to put the contents of the environment into a box. change the depth.
width and height of that box (as known to m) if necessary, and then rotate i t .

4.1 Sideways

The 'sideways' environment simply turns the box through 90°, so no trigonometry is
necessary.

4.2 Rotate

In the case of the rotate environment, we are just going to turn the box without
working out the space for it, so again no trigonometry.

160 TUGboat, Volume 13 (1992), No. 2

4.3 Turn

This is the tricky one. We rotate the box, and work out how much space to leave for
it on the page. We deal with the box as a whole, i.e. both depth and height are joined
to make a single height. After working out the space taken up this box after rotation,
we can worry about placing it correctly in relation to the baseline.
The original philosophy was that given a box with width W and height H, then its
height after rotation by R is W x sin(R) + H x cos(R), and it extends W x cos(R)
to the right and H x sin(R) to the left of the original bottom left corner (formula
courtesy of Nico Poppelier). This works fine in the 'top right' quadrant, but causes
problems in the other quadrants, so we adopted a rather more brute-force scheme. We
consider three vertices of the original unrotated box (A, B and C in Figure I), and
calculate their x, y co-ordinates after rotation by R degrees. This deals with the top
half of the box only, that which comes above the baseline; for the lower half (below
the baseline), we deal with vertices D and E. Given original dimensions of the box as
width W height H; and depth D l the formulae for calculating new positions are:

Ax = W x cos(R)
Ay = W x sin(R)
Bx = (W x cos(R)) - (H x sin(R))
By = (W x sin(R)) + (H x cos(R))
Cx = H x cos(R + 90)
Cy = H x sin(R + 90)
Dx = D x cos(R + 270)
Dy = D x sin(R + 270)
E x = (D x cos(R + 270)) - (W x sin(R + 270))
Ey = (D x sin(R + 270)) + (W x cos(R + 270))

We could work out how far the rotated box extends to the right of the 'starting
point' (S in Figure 1) by taking the largest of (Bx, Cx, Dx, Ex) ; how far it extends to
the left by taking the smallest of (Bx, Cx, Dx, Ex) ; how far above the baseline with
the largest of (By, Cy, Dy, Ey) ; and how far below the baseline with the smallest of
(By, Cy. Dy, Ey) . But that would be a bit slow, so we simplify matters by working
out first which quadrant we are in, and then picking just the right values.

\endturn \def\endturn{%
\egroup%

Because Postscript works clockwise, and because we conceptualize the trigonometry
in a counter-clockwise way, we temporarily reverse the direction of the angle:

We are going to need to know the sines and cosines of three angles: R, R + 90 and
R + 270. Simplest to calculate all these now; in fact we can work it out from just two
calculations.

TUGboat, Volume 13 (1992)) No. 2

Figure 1: Working out the position of a box by considering x, y coordinates of five
vertices

TUGboat, Volume 13 (1992), No. 2

Now we can calculate the co-ordinates of the relevant vertices. To make the coding
easier, we define the formulae given above as macros (just the ones we ever use).

\def\rotQBx{\rotQtemp\cosineA\wd\rotQbox
\advance\rotQtemp by -\sineA\ht\rotQbox)%

\def\rotQBy{\rotQtemp\sineA\wd\rotQbox
\advance\rotQtemp by \cosineA\ht\rotObox)%

\def\rotQCx{\rotQtemp\cosineB\ht\rotQbox~%
\def\rotQCy{\rotQtemp\sineB\ht\rotQbox>%
\def\rotQDx{\rotQtemp\cosineC\dp\rotQbox~%
\def\rotQDy{\rotQtemp\sineC\dp\rotQbox)%
\def\rotQEx{\rotQtemp\cosineC\dp\rot@box

\advance\rotOtemp by -\sineC\wd\rotQbox)%
\def\rotQEy{\rotQtemp\sineC\dp\rotQbox

\advance\rotQtemp by \cosineC\wd\rotQbox>%

Now a straightforward 'if' condition to see which quadrant we are operating in; but if
the angle is negative, first add 360.

First quadrant: Height = By, Right = E x , Left = Cx, Depth = Dy

Second quadrant: Height = Ey, Right = Dx, Left = Bx, Depth = Cy

Third quadrant: Height = Dy, Right = Cx; Left = Ex , Depth = By

Fourth quadrant: Height = Cy, Right = Bx, Left = Dx, Depth = Ey

TUGboat, Volume 13 (1992), No. 2

Put the angle back to what it was before, to pass to Postscript

At the end of all that nonsense, \rotQheight contains the amount above the baseline
we need to leave for the rotated box we are dealing with, and \rotQdepth the amount
below the baseline. \rotQleft and \rotQright are offsets to left and right which we
need to take into account. We are going to set the size of the box we are dealing with
to 0 all round, and put in some struts to force T@ to leave space. We will position
ourselves at the point where the bottom left-hand corner of the top half of box would
have been, then swing the box round by that corner. Thinking about this drives you
mad.

The left adjustment comes out negative, so be careful:

Put in struts (not advancing forward at all), for the height and depth.

Finally emit the Postscript code to start rotation, output the box, end the rotation,
and leave some space at the right if needed.

5 Rotated tables and figures

Now we present some macros adapted from those by James Dolter
(j dolterQsawtooth . eecs . umich . edu) which provide a complete environment for
sideways figures and tables. We define two environments sidewaysf igure and
sidewaystable that fit in with the normal table and figure floats. These are 'fixed'
environments that just do 90 degree rotation, but it would be easy to parameterize
this to do other rotations if needed (the mind boggles. . .).
First a generalised ' rotf loat' environment. We have to take a copy of I4T@'s float
macros, in order to change the assumed width of a float being \columnwidth. We
want it to work on a width of \textheight so that when we rotate the float, it comes
out the right height. This is not actually very satisfactory, since what we really want
is for rotated floats to occupy the space they actually use. The captions are a problem
- since they can precede the figure or table, we cannot set them in a box of the right
width (i.e. the height of the forthcoming object), because it has not happened yet. The
result of these difficulties is that rotated figures always end up as full page figures.

TUGboat, Volume 13 (1992), No. 2

\def \Qxrotf loat#l[#2] C\ifhmode \Qbsphack\Qf loatpenalty -\QMii\else
\Qfloatpenalty-\@Miii\fi\def\Qcaptype{#l)\iflnner

\Qparmoderr\Qfloatpenalty\z@
\else\Qnext\Qcurrbox\QfreelistC\Qtempcnta\csname ftypeQ#l\endcsname

\multiply\Qtempcnta\Qxxxii\advance\Qtempcnta\sixtQQn
\&for \atempa :=#2\do

{\if\Qtempa h\advance\Qtempcnta \Qne\fi
\if\Qtempa t\advance\Qtempcnta \twQ\fi
\if\Qtempa b\advance\@tempcnta 4\relax\fi
\if\Qtempa p\advance\Qtempcnta 8\relax\fi

~\global\count\Qcurrbox\Qtempcnta)\Qfltovf\fi
\global\setbox\Qcurrbox\vbox\bgroup

The only part changed is the setting of \hsize within the \vbox to be \ texthe ight
instead of \columnwidth.

We copy the ' \end@float ' macro and emend it to rotate the box we produce in a
float.

\def\endQrotfloat{\par\vskip\zQ\egroup%
\ifnum\Qfloatpenalty <\zQ

\global\setbox\rotQtempbox\box\@currbox
\global\setbox\Qcurrbox\vboxi\centerline{\begin{turn){-90~%
\box\rotQtempbox\endCturn)))%

\Qcons\@currlist\Qcurrbox
\typeout{Adding sideways figure to list,

\the\ht\Qcurrbox\space by \the\wd\Qcurrbox)%
\ifdim \ht\@currbox >\textheight

\Qwarning{Float larger than \string\textheight)%
\ht\Qcurrbox\textheight \fi

\ifnum\Qfloatpenalty <-\QMii
\penalty -\QMiv
\Qtempdima\prevdepth
\vboxC)%
\prevdepth \Qtempdima
\penalty\Qfloatpenalty

\else \vadjust{\penalty -\QMiv
\vbox{)\penalty\Qfloatpenalty)\Qesphack

\f i\f i)

The following definitions set up two environments, sideways t ab le and sidewaysf igure,
which uses this type of float. Naturally, users may need to change these to suit their
local style. Both contribute to the normal lists of figures and tables.

TUGboat, Volume 13 (1992), No. 2

We need to copy a standard \@makecapt ion to set the caption on a width of the height
of the float (i.e. the text height). This macro is normally defined in LATEX style files,
so style file writers who change that will also need to redefine \r@caption.

\long\def\@makercaption#l#2{%
\vskip 10\pQ
\setbox\@tempboxa\hbox{#l: #2)%
\if dim \wd\@tempboxa >\vsize

#1: #2\par
\else

\hbox to\vsize{\hfil\box\@tempboxa\hfil)%
\f i)%

5.1 Rotated captions only

Sometimes you may find that the rotation of complete figures does not give quite
the right result, since they always take up the whole page. You may prefer to rotate
the caption and the float contents separately within a conventional figure. Here we
offer a suggestion for a \rot caption command, which inserts the caption rotated by
90'. I t is essentially a copy of the normal captioning code. Styles which define the
\@makecaption command may also need to define \@makerotcaption.

While we are doing useful new environments, why not add landscape slides?

TUGboat, Volume 13 (1992), No. 2

6 Trigonometry macros

Now the trigonometry macros which are borrowed from psfigl.8; the original author
is not credited there, so we cannot do so either. All we have done is remove some
spurious spaces which were creeping into my output (and causing havoc!), and put
the comments in 'doc' style.

Turn me on to see T)$ hard at work ...

don't need to compute some values

but assume that we do

Things that need abnormal catcodes

freeze parameter 1 (count, by value)

freeze parameter 2 (dimen, by value)

\edef\tOQ {\expandafter\nOdimen\the #2\rBdian)%
\ tam C\tQ C \ t W C#33%
3%
\gdef\tQrm #1 #2 #3%
{I%
\count 0 = 0
\dimen 0 = l\dimensionlessQnit
\dimen 2 = #2\relax
\MessOge {Calculating term #1 of\nodimen 23%
\loop
\ifnum\count 0 < #1
\then\advance\count 0 by 1
\Message {Iteration\the\count O\space)%
\Multiply\dimen 0 by {\dimen 2)%
\Message {After multiplication, term =\nodimen 03%
\Divide\dimen 0 by {\count 03%
\Message {After division, term =\nodimen 03%
\repeat
\Message {Final value for term #I of
\nodimen 2\space is\nodimen 0)%
\xdef\Term {#3 =\nodimen O\rQdians)%
\aftergroup\Term

TUGboat, Volume 13 (1992)) No. 2

throw away the "pt"

just a synonym

allows division of a dimen by a dimen

should really freeze parameter 2 (dimen, passed by value)

IC%
\count 0 = #l\relax
\count 2 = #2\relax
\count 4 = 65536
\MessQge {Before scaling, c o m t 0 =\the\count O\space and
count 2 =\the\count 21%

do our best to avoid overflow

while retaining reasonable accuracy

TUGboat, Volume 13 (1992)' No. 2

\f i
\f i)%
\def \Sine#l%
-EC%

\dimen 0 = #l\rQdian
\rOduce
\ifdim\dimenO = -9O\rQdian\then

\dimen4 = -l\rQdian
\cQmputef alse

\fi
\ifdim\dimenO = gO\rQdian\then

\dimen4 = l\rQdian
\cQmputef alse

\fi
\ifdim\dimenO = O\rQdian\then
\dimen4 = O\rQdian
\cOmputef alse

\f i
%
\ifcGmpute\then

convert degrees to radians

a well-known constant

we only deal with -71./2 : 7r/2

\divide\dimen 2 by 2%
\Message {Sin: calculating Sin of\nodimen 0)%

see power-series expansion for sine

then we've done

then calculate next term

signs alternate

TUGboat, Volume 13 (1992), No. 2

Now the Cosine can be calculated easily by calling \Sine

%
\def\Cosine#1{\ifx\sine\UnDefined\edef\Savesine{\rel~~\else
\edef\SavesineC\sine)\fi
{\dimenO=#l\rQdian\advance\dimenO by 90\rQdian
\Sine{\nodimen 0)%
\xdef\cosine{\sine)%
\xdef\sine{\Savesine)))
% end of trig stuff

And that's the end of the trigonometry macros. Finally, we'll set up a default for the
driver:

7 Examples

'Rotate' provides a generalised rotation environment, where the text will be rotated
(clockwise, as is normal in Postscript) by the number of degrees specified as a pa-
rameter to the environment, but no special arrangement is made to find space for the
result. Note the % at the end of \begin{rotate){56) - this is vital to prevent a
space getting into the rotated text.

Start here @d here

%
Start here

\begin{rotate){56)%
Save whales

\endCrotate)
End here

A complete example of rotating text without leaving space would the 'Save the
whale' text written at 10 degree intervals round the compass. We use 'rlap' to ensure
that all the texts are printed at the same point. Just to show that can handle
Postscript muckings-about properly. . .

\newcount\wang
\newsavebox{\wangtext)
\newdimen\wangspace
\def\wheel#l{\saveboxC\wangtext)C#l)%
\wangspace\wd\wangtext
\advance\wangspace by Icm%
\centerline{%
\ruleCOptH\wangspace)%
\rule [-\wangspacel COpt)C\wangspace)%
\wag=-180\loop\ifnum\wang<180
\rlap(\begin{rotate)C\the\wang)%
\rule{lcm)~Opt)#l\end(rotate))%
\advance\wang by 10\repeat))
\wheel(Save the whale)

170 TUGboat, Volume 13 (1992), No. 2

If the user desires L A W to leave space for the rotated box, then 'turn' is used:

Start here \begin{turn){-561%
Save the whale

\end{turn) end here

&
Start here end here

The environment 'Sideways' is a special case, setting the rotation to -90, and
leaving the correct space for the rotated box.

Start here
\begin{sideways)%
Save the whale
\end{sideways)
End here

5
Start here g ~ n d here

If you deal with whole paragraphs of text, you realize that boxes are not as
simple as they sometimes look: they have a height and a depth. So when you rotate,
you rotate about the point on the left-hand edge of the box that meets the baseline.
The results can be unexpected, as shown in the full set of paragraph rotations in
Figures 2 and 3. If you really want to turn a paragraph so that it appears to rotate
about the real bottom of the box, you have to adjust the box in the normal L A W

way:

\newsavebox{\foo)
\savebox{\foo){\parbox{lin)ISave
the whales Save the whale
Save the whale
Save the whale))%
Start
\begin{turn){-45)\usebox{\foo)\endfiurn}
End

\savebox{\foo){\parbox[b]{lin){Save
the whales Save the whale
Save the whale
Save the whale))%
Start
\begin{turn){-45)\useboxI\foo)\end{turn)
End

Start End
We can set tabular material in this way; at the same time, we demonstrate that

the rotation can be nested:

\begin{sideways)
\rule{lin){Opt)
\begin{tabular){IlrI)
\em Word & \begin{rotate){-901%
Occurrences\end{rotate).
\\
\hline
hello & 33\\
goodbye & 34\\
\hline
\end{t abular)
\end{sideways)

TUGboat; Volume 13 (1992), No. 2

Save the whales
Save the whale
Save the whale
Save the whale i

Figure 2: Rotation of paragraphs between 0 and -320'

TUGboat, Volume 13 (1992), No. 2

Figure 3: Rotation of paragraphs between 0 and 320'

TUGboat, Volume 13 (1992), No. 2

\begin{quote)
\rule{Opt){1.5in)\begin{tabular){rrr}
\begin{rotate){-45)Column l\end{rotate)&
\begin{rotate){-45)Column 2\end{rotate)&
\begin{rotate){-45)Column 3\end{rotate)\\
\hl ine
1& 2& 3\\
4& 5& 6\\
7& 8& 9\\
\hline
\end{tabular)
\end{quote)

TUGboat, Volume 13 (1992), No. 2

\begin{sideways)
\begin{tabular){~l~c~c~c~c~c~p{lin~~)
\hline
&&\multicolumn{4){c){NUMBER OF SITES)\vline &ACCEPT or\\
\cline{3-6) &STUDY AREA&&\multicolumnI3}{~3C%
IN BOUNDARY ZONE)\vline&REJECT\\
\cline{4-6)&&&&\multicolumn{2){c){EXPECTED)
\vline&NULL\\
\c~~~~{~-~)&&TOT&OBS&FROM&TO&HYPOTH\\
\cline{2-7)
&FULL SAMPLE&41&31&10.3&27.0&REJECT\\
&SAMPLE AREA 1&23&16&4.3&16.7&ACCEPT\\
&SAMPLE AREA 2&18&15&2.8&13.7&REJECT\\
&RUSHEN&13&9&1.2&10.4&ACCEPT\\
&ARBORY&10&7&0.6&8.8&ACCEPT\\
&MAROWN&10&8&0.4&8.6&ACCEPT\\
\ruleCO.Scm)COpt)
\begin{rotate){-9O)PRIMARY UNITS%
\end{rotate)\rule{O.5cm~{Opt)
&SANTON&8&7&0.0&7.3&ACCEPT\\
\hline
\end{tabular)
\end{sideways)

If you are interested in setting rotated material in tables or figures, this presents
no problem. Figure 4 shows how Postscript files which are being incorporated using
psf i g can be rotated a t will. while Figure 5 shows. in contrast. how p s f i g itself
handles rotation. It is also possible to rotate the whole of the figure environment,
including caption, by using the sidewaysf igure and sidewaystable environments in
place of figure and table. The code used to produce figures 1-6 is as follows:
Figure 1 \begin{sidewaystable)

\centering
\caption{This is a narrow table, which should be centred vertically
on the final page.\label{rotfloatl}}

\begin{tabular){I111)
\hline

a & b \ \
c & d \ \
e & f \ \
g & h \ \
i & j \ \

\hline
\endCtabular)

\end{sidewaystable)
Figure 2 \begin{sidewaystable)

\centering
\begin~tabular~CI1111lll1p{lin)l)

TUGboat, Volume 13 (1992), No. 2

\h l ine
Context &Length &Breadth/ &Depth &Pro f i le &Pottery &F l in t

&Animal &Stone &Other &C14 Dates \ \
& &Diameter & & & &

&Bones&&&\\
\h l ine
&&&&&&&&&&\\

\multicolumnilO~iI13i\bf Grooved Ware)&\\
784 $--- &0.9m &0.18m &Sloping U &PI &\times46

& \times8 && $\times52 bone& 21505\pm$ 100 BC\\
785 &--- &1.00m &0.12 &Sloping U &P2--4 &$\times523

& \times21 & Hammerstone &---&---\\
962 &--- &1.37m &0.20m &Sloping U &P5--6 &\times48

& \times57* & ---& ---&I990 \pm 80 BC (Layer 4) 1870 \pm90 BC (Layer I) \ \
983 &O. 83m &O. 73m &0.25m &Stepped U &--- &\times18

& \times8 & ---& Fired clay&---\\
&&&&&&&&&&\\

\multicolumnilO)(Il)C\bf Beaker)&\\
552 &--- &0.68m &0.12m &Saucer &P7--14 &---

& --- & --- &--- &---\\
790 &--- k0.60m &0.25m &U &PI5 &\times12

& --- & Quartzite-lump&--- &---\\

794 &2.89m &O. 75m &0.25m & I r reg . &PI6 &\times3
& --- & --- &--- &---\\

\h l ine
\end(tabular)

\caption[Grooved Ware and Beaker Features, t h e i r Finds and
Radiocarbon Dates](Grooved Ware and Beaker Features, t h e i r
Finds and Radiocarbon Dates; For a breakdown of the Pot tery
Assemblages see Tables I and 111; f o r
the F l i n t s see Tables I1 and IV; f o r t he
Animal Bones see Table V.)\ labelCrotf loat2)
\endisidewaystable)

Figure 3 \begin{table)
\centering
\rotcaptionCMinimum number of individuals; effect of rotating table
and caption separately)\label{rotf loat331
\beginbideways)
\beginCtabular)[b]{cccccccccp{lcm})
\hline
Phase&Total&Cattle&Sheep&Pig&Red Deer&Horse&Dog&Goat&Other\\
\hline
&1121&54&12&32&1&1&1&1&1 polecat\\
3&8255&58&6&35&1&1&1&1&1 roe deer, 1 hare, 1 cat, 1 otter\\
4&543&45&6&45&4&1&1&---&---\\
\hline
&9919&157&24&112&6&3&3&2&5\\
\hline

Figure 6 \begin{sidewaysf igure}

\caption{A pathetically squashed rotated pussycat)\labelCrotfloat4)
\endbidewaysfigure)

TUGboat, Volume 13 (1992), No. 2

Figure 4: Turned, normal, and sideways, pictures within a figure

Figure 5: Figures rotated with 'psfig'

TUGboat, Volume 13 (1992), No. 2

TUGboat, Volume 13 (1992), No. 2

TUGboat, Volume 13 (1992), No. 2

TUGboat. Volume 13 (1992), No. 2

o Sebastian Rahtz
ArchaeoInformatica
12 Cygnet Street
York YO2 1AG
spqrQuk.ac.york.rninster

o Leonor Barroca
Department of Computer Science
University of York
Heslington
York YO1 5DD
1mbQuk.ac.york.minster

TUGboat, Volume 13 (1992), No. 2

Resources I
Book Review: An Italian guide to IQm

Marisa Luvisetto and Massimo Calvani

Claudio Beccari. LAW--Guida a un sistema di
editoria elettronica. Milano: Editore Ulrico Hoepli
Milano, 1991. ix + 399 pp. ISBN 88-203-1931-4

When we were asked by the TUGboat editor to write
a report on a book in Italian on I 4 w , we thought:
"Gosh, it's a rat". So, it was with a lot of curiosity
that we opened the parcel with the book and started
going through it. Despite our prejudices,' we must
admit that our first reaction was very positive. Then
we carefully read the book and, to say it briefly, our
opinion is that it is a very good book, perhaps not
recommended for a novice (we would rather suggest
An introduction to by Michael Urban), but
a book where all commands are described in
detail and, what is very important, with a lot of
examples. The main drawback for wide diffusion of
the book is that it is written in italian, but at the
same time it is a pleasure to finally have a book in
italian on I 4 W .

D m , Guida a un sistema di edatoria elettron-
ica by Claudio Beccari is a complete guide to the
use of I P W for most scientific users and a good
starting point for professional typesetting.

The book has a very good logical layout, not
in the style of a school book but as a manual for
a demanding user. Chapter 1 contains a nontrivial
description of the typesetting process and an intro-
duction to and I P m . A confrontation between
TQX and IPm philosophy is also included.

Chapter 2 is a tutorial description of I 4 m and
it is sufficient for non-professional users who produce
short documents and articles. What we feel is miss-
ing is a suggestion at the very beginning of the book
for the novice to go directly to Chapter 2 and to read
it thoroughly before trying any test.

Chapter 2 is very well organized and reflects the
structure of the whole book. In fact each subsection
of Chapter 2 is analyzed in deeper detail as a stand-
alone chapter with nearly the same title as the sub-
section. Here we find that subsections of Chapter
2 and chapter titles exactly the same would more
closely show the logical connection of the material.

Editor's note: The authors work mainly with
macros of their own devising.

The book gives valuable information on the
typesetting process (e.g. a complete description of
the usage of the period as a punctuation mark) and
the inner working of I 4 m , with exhaustive lists of
parameters, usage, values, suggested values related
to document type, and the like.

Chapters 3 and 4 contain a detailed description
of commands for text and maths. They end with
notes about composition rules and conventions, but
we feel that such notes should be placed more effec-
tively by themselves eventually in an appendix at
the end of the book.

Chapter 5 contains a detailed description of all
Vl)-$ environments. Command descriptions are fol-
lowed by examples to clarify the concepts especially
in complex cases such as boxes. Warnings and ad-
vice on good composition and the way to avoid er-
rors are presented at difficult points throughout the
book. More real life examples are probably needed
in the array and tabular environments.

Chapter 6 on figures and Chapter 7 on macro
definitions are very complex and surely not for the
novice. They are a good starting point for the ex-
pert, but obviously this is a very difficult part of the
typesetting process and would need a book on its
own.

Chapter 8 contains a detailed description of
I 4 w document styles. It is a valuable source of in-
formation on I 4 m parameters and usage especially
for book composition, for which important descrip-
tions on styles, page settings, etc., are given.

Chapter 9 and Appendix C give complete infor-
mation on fonts, size, types, file names, and the like.
A table of magnification values (i.e., correspondence
between mag and resolutions like 1000 == 300, 1200
== 360, etc.) is missing. This information would
be very useful together with a list of which fonts
are stored in the local installation, thus making it
possible to choose from the provided magnifications.
Also error messages and debugging tools are prob-
ably treated too briefly, but this is a problem with
all w I I 4 m books we have used.

Appendix D contains a brief description of ital-
ian grammar rules that are used to create italian
hyphenation patterns.

The book contains a good bibliography and a
fair cross-reference index. The index has the usual
shortcomings we found in most books, i.e., some-
times the page written in the index does not contain
the specified item, but in general the information is
useful and well organized. What we find strange,
however, is the author's decision not to include the
full mathematical command set in the index.

TUGboat, Volume 13 (1992), No. 2

A last remark regards the book as a whole.
Typing errors are frequent even if neither disturb-
ing nor misleading. This problem arises because the
usual editorial step was skipped by the publisher, as
the author has explained, probably due to a rela-
tively informal policy related to electronic publish-
ing in Italy.

To sum up, the global impression is very posi-
tive. This is a basic book for I P m not only because
it is the only one in italian but also for its deep in-
sight into IP' and the complete explanation of
many complex mechanisms in 'IjEX and and
the lot of examples; it is a book that should not
be lacking in the library of any more than trivial
L A ' ' user and one that surely deserves an english
translation. Hopefully this book will fill a gap in the
literature of electronic publishing in Italy and will
give rise to a series of such books in our schools and
Universities.

o Marisa Luvisetto
Istituto Nazionale di Fisica

Nucleare
Viale Ercolani 8
40138, Bologna, Italy
Internet: LuvisettoQCNAF. INFN. I T

o Massimo Calvani
Osservatorio Astronomico
Vicolo dell'Osservatorio
35122 Padova, Italy

Book reviews

Nico Poppelier

UTpJ for Everyone, Jane Hahn, first edition, Per-
sonal m Inc. 1991, softbound, 346 pages

Writing a book is hard work. It can also be re-
warding work- if the readers are satisfied with the
book. In comparison, writing a review about a book
is easy: in a few paragraphs you criticize what it
tooks years to write. Nevertheless, the readers de-
serve an honest review, so I won't hide the fact that
in my opinion the first book reviewed here is less
than what it could have been. This book, L A W for
Everyone by Jane Hahn, is published by Personal
m, Inc. (PTI), and will replace U r n : A Docu-
ment Preparation System by Leslie Lamport in the
P C - m packages that PTI sells.

Surely, Lamport's book leaves a lot to be de-
sired as an introductory book. For this purpose,
you need a book with a clear expository style, a
sufficient number of examples and well designed ex-
ercises. On the surface, it looks as if U W for Ev-
eryone could have been such a book, since it has a
clear 'if you want this, do that' way of explaining,
it has summaries at the end of all sectional units,
and lots of exercises.' Unfortunately it falls short of
being a good introduction: it shows structural flaws,
it contains a substantial number of mistakes, and it
explains several parts of TP' confusingly or not
at all.

Structure

Chapter 2 introduces the basic commands of IPm,
and it also tells you how to adjust line spacing, mar-
gins, paragraph indentation, and footnote spacing;
I will come back to this in a minute.

Chapter 3 is an odd mixture of things: it ex-
plains about document styles, typefaces and type-
face sizes, sectioning commands, symbolic refer-
ences, hyphenation, lists, formulas, accents, and
headers and footers.

Chapter 4 deals with mathematics, but the en-
vironments for displayed equations were treated in
chapter 3. Chapter 5, Rows and Columns, discusses
tabbing, tabular , array and eqnarray. There are
two problems with this arrangement of material.
1. The information on mathematical formulas is

spread over three chapters.
2. array is used in chapter 4 on pages 93 and 99,

but is not explained until later on, on page 128.

I should add that the answers to the exercises
are given in small print below the questions.

TUGboat, Volume 13 (1992), No. 2 183

Chapter 6, Customization, treats page and line
breaks, centering, vertical and horizontal space,
lengths and boxes. This is followed by a chap-
ter on floating objects and one on preparing large
documents. In my view, chapter 6 should have
been put after chapters 7 and 8, and combined with
parts from chapter 3 in a chapter on influencing the
layout.

Chapter 7 contains a lot of useful information
about floating tables and figures, but it could have
been written more concisely I think. And, like other
authors of books on BTJ$ - see some of my ear-
lier reviews- Ms. Hahn does not clarify what t ab le
and f igure are, namely 'envelopes' for floating fig-
ures and tables.

Furthermore, the book contains seven appen-
dices. Appendices A and B, on user-defined com-
mands and counters respectively, contain lots of
useful information with instructive examples. Ap-
pendix C, on style parameters, is also a nice
appendix, but it lacks the page-layout and list-
layout diagrams, which are by now familiar to most

users.
Appendix D treats the p ic ture environment.

Appendix E, Errors, is a particularly good appendix,
with lots of examples. I missed one thing in this ap-
pendix: what happens when you forget the required
argument of \begin{thebibliography)?

Appendix F gives examples in the form of ques-
tion and answer, and is one of the best parts of
the book!

Appendix G 'discusses' SLITEX in twelve (sic!)
lines. The page on which it is printed can just as
easily be torn out of the book, since all it tells the
reader is that SLITEX is a program similar to I P W ,
designed for creating slides, and with commands dif-
ferent from those of IPTJ$. If the reader wants to
know more, he or she is advised to print and read
s l i d e s . t e x and l oca l . tex.

Finally, the index is awkward to work with: all
environments must be looked up under the main en-
try 'environment', and all commands under the main
entry 'commands'. Strangely, the entry 'commands'
is followed by 'captions', 'center', 'comment', . . .
My preference would be to list, e.g., 'p icture' en-
vironment between 'picture' and 'placement', as in
the User's Guide, or to have a separate com-
mand index.

My main criticism is that the structure of L A W
for Everyone does not reflect the philosophy behind

Probably because the index was generated as
explained on pages 194-197 of the book-see fur-
ther on.

BT&-like most other books on I4T)$ unfortu-
nately. Chapters 2-4 of L A W , a Document Prepa-
ration System by IP"s creator Leslie Lamport
mostly explain about those features of IP'I'EX that
are related to logical structure of a document. Only
in chapter 5 does he discuss those features that are
more related to the visual structure of a document.

By contrast, Ms. Hahn continually mixes struc-
ture commands with layout commands.

An example: in almost every chapter Ms. Hahn
introduces a command that accepts the \\ com-
mand, and every time she explains what \ \ [. . . I
does. If she had moved this to a separate appendix
on layout changes, this would reflect the philosophy
of I P W , and it would make the exposition much
clearer.

Another one: in section 3.10.1 she gives this
example
\begin{itemize)
\item [\heartsuit] potatoes
\item [\heartsuit] celery
\item [\heartsuit] f ry ing chicken
\item [\heartsuit] milk
\end{itemize)
immediately after she has introduced the itemize
environment. First of all, this can be done much
simpler with a \renew command of \ l abe l i t emi.
Secondly, this sort of example really belongs in a
separate chapter on layout changes.

Errors

This review column does not provide the space re-
quired for an extensive summary of all errors in

for Everyone. Instead, I will mention a few
interesting ones.

1. The author confuses the document style book
with the abstract class of documents that can
be called 'book'. Furthermore, to confuse the
reader she introduces a new term, 'style guide',
as a synonym for 'document style'. She also
confuses B'I'EX with its standard document
styles (pages 69-70)

2. On page 42 she calls m ' s 'usual' typeface,
Computer Modern, Times Roman.

3. On page 88: 'A super- or subscript that is an
English word should be set in roman type'.
Is this not the case for mathematical texts in
French or Dutch?

4. An explanation of *{n){cols) is missing in
all places where tabular is treated (pages 127
and 288).

5 . 'You should get into the habit of typing names
as follows: . . . J . "S.-Bach' (page 142). Not

true, since it depends on the particular typo-
graphical convention one uses: in common us-
age the space between 'J.' and 's.' is omitted.
A table in section 6.6 suggests that I4QX does
not understand the following units of length:
dd, cc, bp and sp, which the basic QX pro-
gram, and therefore U m , an extension, un-
derstands.
In section 6.7, the author uses \makebox to get
an alignment!
On page 164, Ms. Hahn writes that

results in a right margin of 1 inch. This happens
sometimes, but only if you use American letter
size paper!
The 'default order of preference' for figure
placement is [bthp] ', according to the author.
which is wrong, since this default is given by the
document style, for example [tbp] in a r t i c l e .
On pages 194-197 Ms. Hahn suggests produc-
ing an index by sorting the entries in the
. idx file in your editor, manually changing
the \ indexentry commands into \ i tem and so
forth, and then combining multiple entries into
one. I find this appalling advice, with index
programs such as MakeIndex available.
Similarly, in section 8.5 there is no mention of
 BIB^.
The command \set length is discussed in the
main text, whereas \newcommand,
\renewcommand and \newenvironment are
treated in the appendices. In my view, the
latter are more important, because they make
typing easier or can clarify the structure of
a document. A separate appendix on layout
changes would be an appropriate place to dis-
cuss \set length.
A discussion of \newtheorem is completely
missing.

Besides this, Ms. Hahn sometimes suggests bad
typography. For example a tall formula, an inte-
gral in display style, in text. Shouldn't authors of
books on TEX keep traditional typographical rules
of thumb in mind?

Conclusion

On the whole, U r n for Everyone is an unsatisfac-
tory book. It has the potential of becoming a good
book, in a revised edition, if the structural flaws are
solved and all the errors are removed.

TUGboat, Volume 13 (1992), No. 2

The author considers math U r n ' s strongest
feature, a position I disagree with strongly: its main
merit is document structuring. Math is a TEX fea-
ture, and UQX does not add new math capabili-
ties: it presents them in a structured and sometimes
more user-friendly way. If Ms. Hahn had recognized
the key role of document structuring in IPW, she
would probably have written a different book.

A final remark: the publisher chose to have the
book produced from 2000 dpi camera-ready copy,
which is the high quality output a book on m,
made by TJ$ deserves. Unfortunately, the type-
face Computer Modern was used, and the layout
is the standard book style. That TEX can produce
'masterpieces of the publishing art',3 using other fine
typefaces and a layout created by a professional de-
signer, is shown too rarely - an exception is Victor
Eijkhout's recent book T&X by Topic.

Practical SGML, Eric van Herwijnen, first edition,
Kluwer Academic Publishers 1990, softbound, 307
pages

'A review of a book on SGML in the columns of
TUGboat?' some of you may wonder. What does
SGML have to do with m? Well, nothing, but
since the term SGML has surfaced often in TUG-
boat and on the TUG conferences the past years,4
I thought a review of an SGML book could be worth-
while.

Practical SGML is one of the best books on
SGML currently available. To be absolutely hon-
est, there are not many books on SGML - yet - but
this book is the only one so far with 'many helpful
hints and ideas on developing SGML, applications
and discussions of the current software written to
be conforming to the IS0 standard', as is written
in the foreword of the book. This is indeed a book
about practical SGML!

The book is divided into three parts. Part I,
Getting started with SGML, is an introduction to
SGML. It explains what a document type defini-
tion or 'DTD' is, what the role of the DTD in the
processing of the document is, and what steps are
necessary to create and process an SGML document.

Part I1 is intended for document managers or
programmers, and explains SGML in more depth.

The last line of the last chapter of The
Qxbook.

See for example the proceedings of the 1991
TUG conference.

TUGboat, Volume 13 (1992), No. 2

Some of the topics discussed in this part are: formal
aspects of the language SGML, distinguishing data
characters from markup. and the reference concrete
syntax.

Part 111 is about SGML implementations and
should be read by everyone who has to install and
maintain an SGML software system. Mr. van Her-
wijnen discusses what components are usually found
in such a system, how to create SGML documents,
how to convert SGML documents into documents
that can be processed, for instance to get output on
paper, or in order to store information in a database.
He also gives some examples of SGML parsers.

The book also contains five appendices. Ap-
pendix A contains the answers to the exercises in
the book. In appendix B Mr. van Herwijnen tells
how he wrote Practical SGML using SGML, and in
appendix C he even gives the complete document
type definition for his book.

Appendix D is a short appendix, in which the
author gives common SGML definitions for use with
m. Finally, appendix E contains useful advice on
how to read the IS0 standard (8879) in which SGML
is defined.

At the end of the book we find a glossary and
an index, and throughout the book the author gives
lots of valuable references to existing literature on
SGML and related topics.

Mr. van Herwijnen is leader of the text pro-
cessing section at CERN, the European Laboratory
for Particle Physics in Geneva, Switzerland. SGML
is one of the important tools in the text process-
ing section at CERN, which probably explains the
high quality of Practical SGML: it was written by
someone who has extensively used SGML in prac-
tice. Since no prior knowledge of text processing or
publishing is required to understand what is writ-
ten in Practical SGML, I can highly recommend it
to anyone who is interested in this subject.

o Nico Poppelier
Elsevier Science Publishers BV
Academic Publishing Division
R&D Department
Sara Burgerhartstraat 25
1055 KV Amsterdam,

The Netherlands
Internet:

n.poppelier@elsevier.nl

Book review: 7)jR by Topic

Philip Taylor

Perhaps I have been unlucky, but my experience
of 'alternative' TEX books so far has been rather
depressing; in general, they have been badly de-
signed, poorly typeset, and overburdened with er-
rors. It was. therefore, with some trepidation that
I agreed to review Victor Eijkhout's T&X by Topzc.
Let me say straight away that on the most signifi-
cant of these factors- the number of errors- T&X
by Topzc is way ahead of the crowd. I will return to
the design and typesetting later in this review.

by Topzc is a reference manual to the TEX
language, arranged as its title suggests by topic.
I t makes no pretence to being an introduction to
w, plunging straight in to the four-level hierarchy
(.eyes1, 'mouth', 'stomach' and 'bowels') of the EX
processor on page 1. By far the majority of the book
is concerned with an explanation of each and every

control sequence -primarily those present in
I n i w , but also including those which Victor re-
gards as forming a part of the core of the Plain for-
mat (and which are therefore present in the majority
of other formats, such as U w , as well). Unlike The
rnbook, the index by command makes no differen-
tiation between true 7&.X primitives and those pro-
vided only by the Plain format; there is, however.
a glossary of true TEX primitives. There is also an
index by topic, and a comprehensive bibliography
composed of some fifty entries. The structured na-
ture of the text becomes apparent on a closer inspec-
tion of the indexes. where single references outweigh
multiple by approximately 100 : 1.

Each chapter of the book deals with one par-
ticular TEX topic: fonts, boxes, modes, numbers
and so on; in some cases, a topic is split across sev-
eral chapters: for example, paragraphs are treated
as composed of a start, an end and a shape, each
being afforded a chapter of its own. This treat-
ment is highly beneficial: the Tf$ aficzonado will be
able to tell just from the table of contents in which

Q X by Topic: A mnic ian 's Reference:
Eijkhout, V; 1991. Published by Addison-Wesley
at L24-952 (U.K.), ISBN 0-201-56882-9. 307pp, two
indexes. Midway between Foolscap 4to and Super
Royal 8vo.

Addison-Wesley (U.K) refused to quote an
American price, despite being told this information
was required for a book review

By 'alternative', I mean other than from the
hand of the Master. . .

186 TUGboat, Volume 13 (1992), No. 2

chapter any given aspect of TEX is most likely to
be treated. The less practised reader may choose
instead to consult the index by topic, or even the
index by command if the exact meaning of one or
more commands is sought.

The format of almost every chapter is the same:
each chapter commences with a very brief discus-
sion of the topic treated (essentially an abstract),
and then lists the control sequences relevant to that
topic. Then follows an introduction to the topic,
followed by a detailed discussion of each aspect of
the topic in individual sections. Each control se-
quence listed at the beginning is discussed at some
point in the text, although there is no attempt to
force the book into the format of an encylopzdia:
an individual control sequence m a y form a section
or subsection in its own right, or it may be discussed
in a wider context. This treatment makes the book
more readable (at least, for those like myself who ac-
tually en joy reading deeply technical matter while
lying in bed late at night), although admittedly at
some expense to its functionality as a pure work
of reference. The compromise is a happy one, and
few will have cause to berate the author for lack of
consistency. References to the topic which have ap-
peared in other publications are usually deferred to
the end of a chapter, and one notes that the author is
not averse to self-citation (however, the self-citations
form only ten per cent of the bibliography, so other
authors need not feel slighted; Knuth, by compari-
son, forms just over twenty per cent).

In assessing the accuracy of such a highly tech-
nical work, one has two choices: either read the en-
tire text like a hawk, searching for infelicities, no
matter how small, wherever they occur, or use cer-
tain well-known features of the subject which have
historically caused the greatest number of errors in
previous texts. In assessing by Topic, I have
attempted t o use both techniques. So far as I can
tell, the book is almost error-free: the treatment of
(for example) \af terassignment is excellent, and
makes it quite plain that only one token can be
saved in this way; a subsequent use while the first
is still pending will override the first. Similarly the
treatment of \af tergroup makes it plain that i ts
effect is cumulative. In dealing with \ f u tu re l e t ,
Victor emphasises that it causes \catcode staticisa-
tion of the 'peeked-at' token: this point is so poorly
understood, and the cause of so many problems in
attempts a t the advanced use of \ fu tu re le t , that
documenting this 'feature' is essential; I am very
pleased to see that it is afforded a paragraph in its
own right.

Perhaps one might criticize the fact that Vic-
tor does not point out that \afterassignment tran-
scends the group structure-i.e. an \a f terass ign-
ment performed within an inner group, and not
'used' within that group by an assignment, will be
used whenever the next assignment does take place,
even if the token which has been saved has gone out
of scope. This is, however, nit-picking: the techni-
cal accuracy is excellent. (I think I found one serious
flaw in the whole book, and a few lesser infelicities;
for example, on page 70, Victor asserts that \hf il-
neg (\v f i lneg) is equivalent to \hskip (\vskip)
0 cm minus 1 f il; I would assert that it is equiva-
lent to \hskip (\vskip) 0 cm p lus -1 f i l , which
is entirely different.)

The treatment of terminal-# in a parameter list
follows the party line, in stating that the open brace
which follows forms a part both of the parameter
list and of the replacement text; this explanation,
which is essentially the same as that given in T h e
W b o o k , has never seemed entirely satisfactory to
me (even though it is factually true), and I would
have preferred to see the simple statement that a
terminal-# in a macro parameter list requires that
the macro and its parameters, when used, be fol-
lowed by a brace-delimzted token list. The state-
ment is inaccurate, but leads, I believe, to a more
rapid understanding of the whole raison d'dtre of
terminal-#. One can always go on to explain that, of
course, TEX can't check for the matching close-brace
at that point, but at least the opening brace is re-
quired and checked for. The example which Victor
has chosen makes use of this very feature.

The content is well-chosen: Victor takes as ex-
amples for discussion many of the more obscure fea-
tures of the Plain format (for example, \newif),
and gives a very lucid explanation both of their
implementation and of their inner workings; I re-
member only too well asking the combined read-
ers of W h a x for just such a lucid explanation of
\newif during my exploratory years with TEX, and
getting no response.. . The treatment of spaces is
admirably comprehensive, with clear differentiation
between [one] optional space[s] and 'I'EX'S being in
state S ('skipping spaces').

The proof-reading is to a very high standard;
there are again a few infelicities (for example, on
page 296 the column headed \mathcode should ac-
tually read \delcode), but these do not detract
from the usefulness of the text. not are they suf-
ficiently numerous to perturb the eagle-eyed reader.
The hexadecimal values given in the tables which ap-
pear at the end of the text should be treated with a
degree of scepticism: Knuth himself has been known

TUGboat, Volume 13 (1992), No. 2 187

to vacillate about the 'correct' value for some of the
more arcane maths delimiters, and they may con-
tinue to fluctuate for a while. For reasons which are
not at all clear, Victor collates "2200 after "2203
on page 295; I suspect this was a rare oversight.

The grammar and usage are unexceptionable;
there is a strange ambiguity as to whether the book
is written for an American or a British audience,
with 'centre' invariably spelled in accordance with
<Br.E> usage, whilst 'mathematics' is invariably ab-
breviated to 'math' (<Am.E>), where <Br.E> would
have 'maths'. (I still can't pronounce the former
of these variants; it always sounds to me as if I'm
lisping!). Victor concurs with the authors of the
Algol-68 Report in treating the plural of 'formula'
as 'formulas' rather than 'formulz'. There is a
rather strange usage of 'treat' in the opening para-
graphs of the preface, leading the reader to expect
the archaic 'treat of', but instead leading to no
preposition at all.

It is perhaps unfortunate that reviewers of
books on typography and typesetting can no longer
allow themselves the luxury of commenting solely on
the content -it is almost de rigeur to pass judge-
ment on the design and typography of the text as
well, even though this may well have been without
the control of the author; in the present work, for ex-
ample, the typographic design is attributed to Merry
Obrecht.

Whilst from a content point of view the book
can hardly be faulted, the design and typesetting
do not, in the opinion of the present reviewer, do it
justice. Such criticisms are, of course, highly sub-
jective, unlike those of the accuracy or otherwise of
the text; book design is by its very nature a highly
personal and individual art-form, and it would be a
foolish reviewer indeed who insisted that any par-
ticular element of a design was categorically right
or wrong. None the less, the design cannot be com-
pletely ignored, and the following remarks are there-
fore offered as one person's view, rather than as facts
cast in stone. . .

Ignoring the received wisdom that underlining
is an artifact of typewritten text, and has no place
in typeset material, section headings and subsec-
tion numbers have both been underlined; this ob-
session with printed lines also manifests itself in
the design of each opening chapter page, where a
vertical and horizontal rule (forming an enormous,

Report on the Algorithmic Language ALGOL 68:
Wijngaarden, A. van, Mailloux, B.J., Peck, J.E.L. &
Koster, C.H.A; 1969. Offprinted from Numerische
Mathematik, 14, 79-218 by Springer-Verlag.

horizontally-elongated, letter 'L') serve to set off the
title of the chapter from the other material on the
page. The title and half-title pages echo this de-
sign, but duplicate and offset a second copy of both
rules to form two nested 'L's. In the running heads.
white space and a forward slash separate the section
number from the current section name.

The placement of page numbers is rather less
than felicitous on the opening chapter pages; on the
first such page, for example, a black rule about 8 pt
high and 1.5 pt wide appears at the bottom of the
left margin parallel to the last line of the page, and
for a long time I thought this was a change bar re-
flecting some improvement from an earlier edition.
Only after several readings did I notice that this was
a first edition. . . In all, the design is rather too fussy
and avant garde for this reviewer.

The book is set in Baskerville and Gill Sans, and
the general impression of the main text is that it is
under-inked. I have to hand an issue of Baskervzlle
typeset in Baskerville at 1270 dpi; the visual density
of the type is significantly greater, and one wonders
the printers were perhaps a little parsin~onious in
their use of ink (but see below). Whilst the main
text just holds together, the slightly smaller font
used on the title page and occasionally elsewhere
breaks up badly: there are two distinct discontinu-
ities in both lower- and upper-case 'O', and one in
upper-case 'C', although, rather intriguingly. there
is a single line of nine-point text in the colophon,
which is otherwise entirely in ten point. which reads:
Prznted in Great Britain by Mackays of Chatham
plc: in this line, the lower-case '0' does not break up.
One wonders if (a) Mackays added this line to the
plate themselves, and (b) whether, in fact, the bro-
mides were to blame for the apparent under-inking
rather than the printers.. . The back cover suffers
from the classic under-kerning of the logo which
seems to occur whenever professional typesetters are
entrusted with the task of reproducing it.

The typesetting conventions of the main text
may cause the aware reader some hesitation: en-
dashes. set off by the space of the line, have been
used where em-dashes might otherwise be expected.
When a control sequence occurs as a part of
a section heading, the necessity to drop temporar-
ily into the lower-case characters of a teletype-like
font interrupts the continuity of an otherwise en-
tirely upper-case Gill Sans heading; the interruption
is less disturbing in the subsection headings, which
are themselves in mixed-case, but there appears to
have been no attempt to match for visual density.

The Annals of the U.K. Users' Group

TUGboat, Volume 13 (1992), No. 2

The best point of the typesettingldesign is its
consistency: first paragraphs are never indented,
and almost all pages are exactly full, even at the
expense of an occasional widow or orphan (<Am.E>
.club-line'). The use of Baskerville ensures a highly
legible text.

In summary, I have absolutely no hesita-
tion in recommending this book, not only for the
cognoscentz, but also for the more casual 7&X user
who finds that the rather less formal but more didac-
tic nature of The mybook renders it somewhat less
than ideal as a work of reference. It seems unlikely
that many would choose to learn m solely by a
study of T3j$i b y Topzc (after all, even the Algol-68
Report, which must rank as one of the most compre-
hensive language definitions ever written, is accom-
panied by the less formal but infinitely more read-
able Informal Introductzon), but once past the initial
learning stage, few would fail to derive benefit from
easy access to a copy of by Topzc. Its accuracy
puts most of its competitors (well. to be honest, it
doesn't have any real competitors) to shame, and
its usefulness is without doubt. It will join Comput-
ers & Typesettzng: Vols. A-E and Another Look
at 7)-JY7 as essential reference material on my m
shelf. I am reliably informed that Un petzt lzvre de
7)-JY8 should join these three, but I haven't yet had
the opportunity to see a copy, and I've just received
T&X b y Example lo but am not yet in a position to
pass judgement.. .

o Philip Taylor
The Computer Centre, RHBNC,

University of London, U.K.
<P.Taylor@Vax.Rhbnc.Ac.Uk>

Computers & Typesetting: Vols. A-E: Knuth.
D.E; 1984~. Published by Addison-Wesley in both
case-bound (A-E) and soft-bound (A & C) editions.
The canon.

Another Look at T&X Bechtolsheim, Stephan
von: 1987. Pre-print copy. Rumoured to be appear-
ing as a multi-volume work by a real publisher (and
under another title) 'real soon now'.

Un petit liure de 7)-JY.' Seroul, Raymond; 1989.
Published by InterEditions, Paris. ISBN 2-7296-
0233-X.

Published in translation as A Beginner's Book
of 7&Z Seroul, Raymond & Levy, Silvio; 1991.
Published by Springer-Verlag. ISBN 0-387-97562-4.

lo 7&Z b y Example: Borde, Arvind; 1992. Pub-
lished by Academic Press at £13-00 (U.K.), $19-95
(U.S.). ISBN 0-12-117650-9 (A.P. were much more
helpful in quoting American prices. . .)

A Macro Index

David M. Jones

The rn community is blessed with a plethora of
publicly-available macros; a decade's worth of expe-
rience is available from a series of archives through-
out the world. The hitch, of course, is that there
is no systematic catalogue of these macros, so the
vast majority of m users remain unaware of their
existence. Frequently. the only recourse a user has
is to cast a message upon the electronic waves and
hope that some useful information makes its way
back from the depths. For users without ac-
cess to such electronic forums, the situation is even
bleaker.

With this in mind, I decided to compile an index
of macros. The scope of the Index includes all
macros that are available via anonymous ftp or mail-
server or some similar mechanism. Priority is given
to the major archives (Aston, Stuttgart, SHSU and
ymir). The Index covers a variety of packages, in-
cluding plain m, eplain, L4w, AMS-TpX, AMS-
IPW. LAMS-!$$, and W T 1 . Commercial
packages are included only if the information is sup-
plied to me by the vendor.

A minimal useful index entry consists of the
following fields:
Name The name of the macro package, usually the

name of the file containing it.
Description A short (1-3 line) description of what

the package does.
Keywords A list of keywords to facilitate searching

for special-purpose macros, as well as to help
describe the macros. A glossary of keywords is
included.

Archives A list of archives where the package can
be found. Whenever possible, the home loca-
tion of the package is identified and marked
with an asterisk.

Whenever possible or appropriate, the following in-
formation is also included:
Author The name and address (preferably elec-

tronic) of the author of the package.
Latest Version The date and/or version number

of the latest release of the package.
Supported Whether or not the package is officially

supported, that is, whether the author wants
to receive bug reports and/or comments on the
package.

See also A list of other packages with similar fea-
tures.

Note Any additional information which seems per-
tinent.

TUGboat, Volume 13 (1992), No. 2

As examples, here are two representative entries
from the draft of the Index.

Name: btxmac.tex
Description: Provides support for using

BIBTEX with plain T$J.
Keywords: plain m, BIB^, bibliography
Author: Karl Berry and Oren Patashnik

(opbibtexQcs.stanford.edu)
Supported: yes
Latest Version: v0.99j, 14 Mar 1992
Archives: labrea* , ymir

Name: 1ongtable.sty
Description: I4m style option defining a

multi-page version of tabular.
Keywords: U r n , array, tabular, page
Author: David Carlisle

(car l is leOcs . m a n . ac .uk)
Supported: yes
Latest Version: v3.1, 6 Apr 1992
Archives: shsu*
Note: Documentation requires Mittelbach's

docsty.
See Also: supertab.sty

The current draft of the Index (dated June 1.
1992) has approximately 600 entries. I hope to in-
crease that to 1000 by the end of June, when I plan
to release the Index to the general public by mak-
ing it available by anonymous ftp and mail server.
Beginning in July at the Annual T$J Users Group
Meeting, the Index will also be distributed through
TUG. In the meantime, I'll be contacting the au-
thors of macro packages and requesting their help in
verifying the information I have. If you have writ-
ten a macro package that you think should be men-
tioned in the Index, please contact me (preferably
by electronic mail) at the address below.

o David M. Jones
MIT Laboratory for Computer

Science
Room NE43-316
545 Technology Square
Cambridge, MA 02139
Internet:

dmjones@theory.lcs.mit.edu

Tutorial

Names of control sequences

Victor Eijkhout

1 In t roduct ion

In the .Lollipop' format that I wrote, first to type-
set my ph.d. thesis, then to set my book 'm by
Topic' (Addison-Wesley 1992), I try to move away
a bit from the ordinary syntax. For instance,
declaring a \newskip register, and setting the value
of it are done using only one command, with the
syntax
\Distance :UnitQuad=l2pt
\Distance:parindent=Unitquad

The first command here declares a skip register
\Unitquad. and initializes it to 12pt; the second
takes the csparindent and sets it to the value of
\Unit Indent.

In order to perform these actions correctly, we
should be able to distinguish

1. whether a control sequence is already defined
(\par indent) or not (\Unitquad), and

2. whether a string is the name of a control se-
quence (Unitquad) or a litteral string (12pt).

Both problems are really the same, as we shall see
below.

2 Messing wi th \csname

The matched pair of control sequences \csname and
\endcsname can be used to construct control se-
quences out of arbitrary characters. Ordinarily,
names of control sequences are limited to letters
only (or, to be more precise, to characters of cat-
egory l l), but in between these two commands any
character can appear. Macros and other expandable
commands are also allowed, as long as they will ul-
timately expand to characters.

For instance

expands to a control sequence with a colon in the
name, and

expands to either \hskip or \vskip.
A useful property of \csname is that if you form

the name of a control sequence that has no definition
(that is, it is no primitive, register, macro, or oth-
erwise defined), the result is equivalent to \ re lax.
Thus

190 TUGboat, Volume 13 (1992), No. 2

\csname probably:not=defined!\endcsname

is with a high likelihood equivalent to \ re lax. We
can use this property to test whether a control se-
quence has been defined: if it hasn't it is equivalent
to \ re lax.

For this test we use \ i f x which tests equality
of control sequence definitions1. For instance

\let\HorizontalContainer=\hbox
\ifx\hbox\HorizontalContainer % is t r u e
\ de f \ a IO) \def\bi<>)
\ i fx \a \b % i s t r ue

In order to see if a control sequence has been defined,
we have to compare it to \ re lax.

Suppose we want to have a macro that can be
called

\ifUndefined{maybe:macro) . . \ e l se . . \ f i

We can defined this as

\def\ifUndefined#l{\expandafter\ifx
\csname#l\endcsname\relax)

The \expandafter activates the \csname to form
the control sequence name, and \ i f x then compares
it to \ re lax. Note that we have actually defined
a macro that tests whether a control sequence is
undefined.

We can now start assembling the macro
\Distance.

\def\Distance:#l=#2
{\ifUndefined{#l)\MakeNewSkip{#1){#2)
\ e l se \SetOldSkip{#l){#2)
\f i)

(Note that with this definition the second parameter
is a string delimited by a space, for instance the
space resulting from the line end.) So far we have
glossed over one point: the value that is assigned
(parameter 2) can be either a value or again the
name of a control sequence. It makes sense then to
define

\def\ValueOf#l{\ifUndefined{#l)#l
\ e l se \csname#l\endcsname \ f i)

which takes the argument itself if it is not the name
of a control sequence, and otherwise forms that con-
trol sequence.

Now \SetoldSkip is easy:

\def\SetOldSkip#l#2C%
\csname #l\endcsname=\ValueOfC#2fi

For \MakeNewSkip we first need to allocate a new
skip:

\def\MakeNewSkip#l#2{%

Just a small remark here: the \newskip macro of
plain 'I)$ has been declared with the prefix \outer,
so it cannot be used the way it was done above.
In order to write the above code, the definition of
\newskip has to be copied from plain TI$, but with-
out \out er .

3 And now what?

The macro \Distance explained above is not ex-
actly spectacular, but I hope that the readers have
learned some new tricks about control sequences.
Furthermore, I will be using the techniques ex-
plained here in forthcoming articles about certain
parts of my Lollipop format.

o Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville TN 37996-1301
Internet: eijkhoutQcs .utk.edu

Puzzle

Where does this character come from?

Frank Mittelbach

Puzzle:
If some complex macro defined by you
produces funny extra characters like
"R" or "en in the output, what kind of
mistake could be the reason?

o Frank Mittelbach
Electronic Data Systems (Deutschland)

GmbH
EisenstraBe 56 (N15)
D-6090 Riisselsheim
Federal Republic of Germany
MittelbachQmzdmza.zdv.Uni-Mainz.de

It can also be used to test characters, but that's
not relevant here.

TUGboat, Volume 13 (1992), No. 2

Macros

The bag of tricks

Victor Eijkhout

Yo! Home boys and girls.
Another installment of the bag of tricks, this

time with some stuff about hyphenation.
Sometimes you want to prevent hyphenation

at a hyphen. Inserting a \nobreak doesn't work.
Reader Sonja Maus alerted me to this, and gave as
a solution \hboxC-}.

The New York Times uses a typesetting sys-
tem that produces with disturbing regularity the
hyphenation "do-n't" . (Question for wizards: why
doesn't Qi$ produce this hyphenation?) The fol-
lowing macro provides a solution to this problem:
with

\def\nt'(\discretionary{)(not}{n't}}

typing
do\nt '
gets hyphenated as if it were written "do not". Try
for instance the following input:

\spaceskip=3.3pt plus 1.2pt
\setboxO\hbox{IJm perturbed seeing

words that do)
\hsize\wdO \parindentopt
I'm perturbed seeing words
that do\ntJ hyphenate correctly\par

\setboxO\hbox(I'm perturbed seeing
words that don't}

\hsize\wdO
I'm perturbed seeing words
that do\ntJ hyphenate correctly\par

The third item in this Bag of Tricks is a home-
work project. W ' s hyphenation has been giving
people trouble for ages, and clever solutions have
been known for some time. Here's a way of deal-
ing with problems that was used in German [3]
and Dutch [I] extensions to IPW, and that can
be adapted for many more applications. "'*

If TEX finds discretionary hyphens \- or explicit
hyphens - in a word, no other hyphenation positions
will be considered. This can be awkward. People
have solved this by redefining the double quote as
an active character, so that you write

the Zielknijper1I-Plrwtskofsky theory

and either of the long names will still be considered
for hyphenation. By defining combination of the

double quote with other characters you can achieve
other effects. Here are some possibilities, but all of
this is subject to taste and to particular applica-
tions.

(or with any other vowel) gives a disappearing
syllable break, which occurs in Dutch and Ger-
man and older English texts: coUordinate hy-
phenates as co-ordinate. (Even more cute,
in Dutch beninken looks like 'bei'nken' and hy-
phenates as be-inken.)

gives a break position that will hyphenate with-
out a hyphen. I use this in bibliographies to en-
able a break in expressions such as '123(1988)'.

will give a double quote when you need that char-
acter, for instance in W ' s hexadecimal nota-
tion.
. . . " ' can be implemented as language-
specific opening and closing quotes. The im-
plementation below is for old-style English.

Here are the macros.

More strange phenomena with hyphenation can
be found in [2].

Until next time. See you backstage at the next
TUG meeting!

References

[1] Johannes Braams. Babel, a language option for
I P W . TUGboat, 12:291-301, 1991.

[2] Michael J. Downes. Line breaking in \unhboxed
text. TUGboat. 11:605-612.

[3] Hubert Partl. German m. TUGboat, 9:70-72,
1988.

o Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville T N 37996-1301
Internet: eijkhoutQcs .utk.edu

TUGboat, Volume 13 (1992), No. 2

Over the multi-column

P6ter Huszar

With a good multi-column environment you can
handle almost every problem you are faced with.
But sometimes you may want to produce more
complicated pages: text around a picture or real
newspaper pages which are sets of articles (boxes)
rather than sequences of columns. The environment
presented in this article gives you a convenient way
to describe such pages.

The idea

When you use plain w, you needn't care about
page-setting. TEX has a powerful algorithm for
making lines into a single-column page. This
format is so simple (even if it depends on a dozen
or so parameters) that such a page can be produced
by a constant output routine provided in p la in .
Thus you only have to type your text and 7&X
builds up this format. However, if you want to
produce a more complex page, first you should
describe its structure, i.e., how many parts does a
page contain and how are they connected logically
and physically. For example. a multi-column page
consists of as many parts as the number of columns:
there is an order on the parts (the sequence of the
columns); and they are put next to each other. But
this is still a restricted form of a general page which
looks as follows:

A page is built up of logical areas. I will use
the phrase 'logical area' for the logical units of the
page (articles, pictures, etc.). Each area is a list of
boxes (you may want to divide an article in two or
more parts). For example let's consider the page of
Figure 1.

There are six areas on the page:

the TITLE
a PICTURE
article 1, which consists of three boxes:
BOX 1.1, BOX 1.2 and BOX 1.3
article 2, which consists of just one box:
BOX 2.1
article 3, which consists of two boxes:
BOX 3.1 and BOX 3.2
an ADVERTISEMENT

As you can see it is rather difficult to describe this
page in a multi-column format which is just one
area with restricted placement of its boxes on the
page. The main problem is that there is no proper
ordering on the boxes (if you represent each box as
a point then this is the same problem as ordering
on complex numbers), so you can't make one list

from the boxes. I will now give an environment to
describe such a page.

How to describe (plan) the page

The strategy of planning is that first we describe
the areas and the boxes on the page, then we 'fill'
the boxes with their contents (text, picture, etc.).
This means that the dimensions (width, height and
depth) of a box are independent from its contents,
contrary to m ' s boxes where you can prescribe
only one of the three dimensions and the other two
will be known just after putting the contents into
them. (The problem of how much space a text
needs is rather general, I guess.)

The description part of the macro package
should allow you

1. to describe as many areas as you want to;
2. to describe the list of boxes of each area;
3. to specify vertical and horizontal sizes of each

box;
4. to specify the position of each box on the

page.
First let's examine these problems from the point
of syntax. You should specify boxes and areas as
a list of boxes. An element in the list has a data
part and a pointer to the next element; this pointer
points to 'null' (i.e. nowhere) at the end of the list.
It means each box (I'll use the name planbox for
these boxes to differentiate them from W ' s boxes)
should have the following parameters:

a. a name (we want to handle it as an ordinary
allocated \box),

BOX

1.1

BOX

2.1

BOX

1.2

TITLE

PICTURE

1 BOX 1.3

Figure 1.

TUGboat, Volume 13 (1992), No. 2

b. horizontal and vertical sizes (width and
depth),

c. position on the page specified as horizontal
and vertical distance of the left upper corner
of the box from the left upper corner of the
page,

d. a pointer to the next planbox (the best way is
to give the name of the next planbox);

in other words, something like this:

<name>,<width>,<depth>,<hdis>,<vdis>,<next>;

where <next> is either a <name> or the constant
\null. The semicolon is redundant but you can
read the source code easier with it. In this format
we can describe the example page above with the
\plan macro as follows (the parameter of \plan is
the total number of planboxes on the page):

\plan 9; % total number of planboxes
\TITLE , \hsize , 2cm, Opt, Opt, \null;
\ArtIone , 3cm, IOcm, Opt, 2cm,\ArtItwo;
\ArtItwo , 3cm, 13cm, 3cm, 2cm, \ArtIthree;
\ArtIthree , 4cm, 2cm, 6cm, Iscm, \null;
\ArtIIone , 3cm, 6cm, Opt,l2cm,\null;
\ArtIIIone, 4cm, 5cm, lOcm, l3cm, \ArtIIItwo;
\ArtIIItwo, 2cm, 5cm, 14cm, Iscrn, \null;
\AD , 7cm, 3cm, 3cm,l5cm,\null;
\PICTURE , 10cm,llcm, 6cm, 2cm,\null;

This format also specifies the areas. Each area starts
after the end of the previous area, i.e., after a \null
pointer. You'll see below that this information is
enough to handle the areas.

Until now I've written about whole pages, but
you aren't restricted to plan the whole page every
time. If you plan just a part of the page, the origin
for the positions of planboxes is the left upper
corner of the planned part (i.e., relative positions,
so you can shift the plan on the page without
changing them) and the planned part will be put
at the current position when \bpage (see below) is
performed.

Filling the page

The plan is ready, knows the structure of the
page (or the planned part of it), and we can start
putting the text into planboxes. The procedure my
macro offers you is the following:

You should choose an area you want to deal
with.
You can type in your text.
At any point you are allowed to choose
another area.
At any point you are allowed to switch to the
next box within the area (like an \eject).

e If you don't want to switch by hand, the
macro automatically switches to the next box
when the current one is full. After the last
box in the area it gives you a warning.

Let's consider the actions step by step.
To start the page (the planned part) and to

select an area you simply type:

where <area> is the <name> of the first planbox in
an area. (You can choose not just the first but any
box in the area; however, you can't switch back to
the previous boxes.) The chosen planbox becomes
an individual page (with its own width as \hsize
and height as \vsize). This is a page from the
view of the algorithm but it hasn't got \headline,
\f ootline, \footnote or floating insertions.

Now you can type your text for this area.
Having finished, you can choose another area by
saying:

It is quite simple, isn't it? You can fill the areas
one by one in any order you want (there is no
restriction). Indeed you can go back to a previous
area but if you do so the previous 'value' of the area
will be overridden.

Inside an area you are allowed to switch to the
next box with the command:

There is no need to specify the next box by giving
its name. With the pointer technique the macro
figures it out.

At <nextbox> and <nextarea> you have a
choice: you can put a \vfill at the end of the
current planbox with \fillON or you can omit it
with \f illOFF. The macro package sets \f illOFF
at the beginning of every box.

At the end simply say:

to finish the page. All four commands can be used
immediately after a paragraph, but not inside one!

Hyphenation. The macro package tries to avoid
any hyphenation (for the reasons see below). But
sometimes (especially in narrow planboxes) it gives
very poor output (underfull hboxes). You can
enable hyphenations with \hyphensON. However,
this way the package may produce hyphenations in
the midst of some lines. You can correct mistake
by saying \hbox{word) to enclose the hyphenated
word.

Automatic switch

The main advantage of the macro package is the
automatic switch. If a planbox is full of text the
macro package automatically switches to the next
box in the area. With this feature you can e.g.
have text to flow around a picture (see An example
below), or plan a page like the one above.

The default way to fill the page is the automatic
switch. You can disable it with \automaticOFF and
enable it again with \automaticON.

If there are no more boxes in an area the macro
package produces an error message (a warning), and
calculates and writes to the logfile the space which
the rest of the text needs.

An example

This is a very simple example but it can be used
often in everyday w i n g . The problem is a picture
which is in the middle of the page and which is
narrower or wider than a column or the page:

Here is the text above a picture of width (5pc)
less than one third of the column's (1 8 . 7 5 ~ ~) :

and the text continues here below the picture.
The empty space around the picture is about
6 . 2 5 ~ ~ ~ 1 3 ~ ~ . With this environment you can have
the text flow around the picture. The parameters
are as above (picture height=6. lpc):
\let\bs=\baselineskip
\let\hs=\hsize \let\vs=\vsize
\newdimen\pwd \pwd=6.25pc % picturewd
\newdimen\pht \pht=6.lpc % pictureht
\newdimen\ptop \ptop=2\bs
\newdimen\pbot \pbot=\ptop

\advance\pbot \pht
\def\boxit#1~\vbox~\hrule\hbox(\vrule

\kern7pt\vbox{\kern7pt#l\kern7pt)%
\kern7pt\vrule)\hrule))

\plan 4;
\above, \hs, \ptop, Opt, Opt, \near;
\near , llpc, \pht, opt, \ptop, \below;
\below, \hs, 2\bs, Opt, \pbot, \null;
\pict , \pwd, \pht , 12pc, \ptop, \null;

Just a little text outside of the plan to
show the possibility of planning a part
of the page.
\bpage\above ;
\automat icON \hyphensON

TUGboat, Volume 13 (19921, No.

Here are two lines of text above the
picture. When these two lines are full
the text continues at the side of the
picture. The picture is placed on the
right side of the column as you can see.
When this box is full of text (somewhere
here at this point) the text flows
automatically to the next box which
is actually a little space below the
picture \fillON for the rest of the
paragraph.

\nextarea\pict ;
\f illON
\leftline{)\nointerlineskip
\vf ill
\centerline{%
\boxit{\boxit{\boxitI\boxit{~)~~%
)

--

\epage
And now we're outside of the planned part
again.

This code yields (notice that the whole plan
in the middle of a multicolumn environment):

Just a little text outside of the plan to show
the possibility of planning a part of the page.

Here are two lines of text above the picture.
When these two lines are full the text continues at
the side of the picture. The
picture is placed on the right
side of the column as you can
see. When this box is full of
text (somewhere here at this
point) the text flows automat-
ically to the next box which is actually a little space
below the picture for the rest of the paragraph.

And now we're outside of the planned part
again.

The rest of the paper looks behind the screens and
explains how this package works.

Planning the page

When the user invokes \plan the package should
store all the information about the structure of the
page. This includes the attributes of the planboxes
and some supplementary information used by the
package. The attributes require registers for their
values while the system information supplies some
notes on these registers. First of all, \plan stores

TUGboat, Volume 13 (1992), No. 2 195

the number of planboxes on the page in \planbQxno
and the current insertion number in \maxplanbQxno
(the reason for this will be explained later).

Information about each planbox is stored by
the recursive macro \makeplanbQx. This is
done in two steps: first allocating the necessary
registers (\planboxallQc), then setting their values
(\setsiz@s):

% creating a planbox
% #I name, #2 width, #3 depth
% #4 hdis, #5 vdis, #6 next
\def\makeplanbQx#l,#2,#3,#4,#5,#6; i%

\planboxall@c#l#6
\setsiz@s#2,#3,#4,#5;
\advance\planb@xno \m@ne
\if num\planbQxno>\zQ

\let\next \makeplanbQx
\else \let\next\pl@nrest \f i \next]

Allocation. We need six registers for a planbox:
a box register named <name> for the contents; four
dimension registers for <width>, <depth>, <hdis>
and <vdis>; and a token list register for <next>
which contains the <name> of the next planbox.
The package should figure out from the <name> the
other registers for this planbox. Using an insertion,
we get just a box register, but no token list register
and instead of four just one dimension register.
The token list register can be 'appended' to the
insertion but we have to allocate the dimension
registers separately from the other registers and
use a 'pointer' to these dimensions. This pointer
comes from the count register of the insertion. It
always points to the highest of the four consecutive
dimension registers. The first version of this would
look like this:

\def\planboxall@c#l#2~%
\newdimen#l % the names
\newdimen#i % of these
\newdimen#l % registers are
\newdimen#l % unimportant
\newinsert#l
\global\toksdef #2=\allocat ionnumber
\global\toks\allocationnumber~#2)

% the token list register
\global\count#l=\countll

% the pointer to the
% highest allocated dimen

Unfortunately there are some problems with this
construction. First of all the \new. . . commands
cannot be used inside a macro because they
are defined to be \outer. Redefinition would
be a good solution for this but not the other
problems. Namely in this case you would find
in the log file many messages about insertion and
dimension allocations but no information about
planbox allocation. Furthermore this is not an
efficient construction and its form is quite different
fi-om the other kinds of allocation in plain. Yet
planbox is something like an insertion: not just a
set of certain registers but also logical connections
among them. For this reasons my solution for the
allocation is the following, which is a simple merge
of a \newinsert, a \newtoks and four \newdimen
commands with only one \chQck for each kind of
register and with the appropriate message to the log
file. I also set the value of the token list register here
because I want to keep the assignments connected
with \allocationnumber together:

% allocation for width,depth,
% hdis,vdis,name,next
\def\planboxallQc#l#2(%

\global\advance\insc@unt by\mQne
\global\advance\countll 4
\ch@ckO\insc@unt\count
\chQckl\insc@unt\dimen
\chQck4\inscQunt\box
\chQck5\inscQunt\toks
\allocat ionnumber=\inscQunt
\global\chardef#l=\allocationnumber
\global\toksdef#2=\allocationnumber
\global\count#l=\countll
{\advance\count#l -3
\wlog{\string#l=\string\insert

\the\allocationnumber;
\dimen\the\count#l . . .
\dimen\the\countll .I)

\global\toks\allocat ionnumber(#2))

For storing the values, it would be better to use
the pointer of the planbox, but instead I use the
'dirty information' that right after the allocation
\count11 points to the same register as the pointer
of the planbox would do (this way I save an
indirection) :

% storing width, depth, hdis and vdis
% in the appropriate registers
\def\setsiz@s#l,#2,#3,#4; i%

{\global\dimen\countll #4
\advance\countll \m@ne

\global\dimen\countll #3
\advance\countll \mQne

\global\dimen\countll #2

TUGboat, Volume 13 (1992), No. 2

\advance\countll \m@ne
\global\dimen\countll #I))

After getting the attributes of the planboxes,
\pl@nrest is invoked. It stores the current
insertion number in \minplanb@xno. This register
and \maxplanb@xno point out the place of the
planboxes; this information will be used at the end
of each use of the package to release the occupied
registers. I also allocate a planbox for \null. It's a
trick and seems to be useless here but you'll see its
importance below. Nevertheless, notice that \null
is not a real null pointer but a planbox!

\newcount\minplanb@xno
\def\pl@nrest{%

\global\minplanb@xno\insc@unt
\planboxall@c\null\zero
\setsiz@s\hsize , \maxdimen, \z@ , \z@;
\egroupl

Filling the page

The structure is ready, all the registers have been
allocated and all the logical connections are set; we
can start to fill the planboxes with their contents.

Let's consider the actions step by step:

The first macro invoked is \bpage:

\def \bpage#l ; {\bgroup \s@vepagesof ar
\tolerance=10000
\showboxbreadth1 \showboxdepth1

% there are many Underfull hboxes
% while processing

\advance\baselineskip Opt
plus .3pt minus .lpt

\wlog{Beginning of Page.)
\def\par(\endgraf\egroup\pl@npar)
\output{\fullb@xoutput)\topskip\z@
\bb@x#l;)

Its main task is some preparation and initialization.
Before any action, it saves the part of the page
which is ready at this time in \s@vepagesof ar:

\newbox\p@gesof arbox
\def\s@vepagesofar{\output{%

\global\setbox\p@gesofarbox\vbox~%
\unvbox255))\eject)

Afterwards, it sets \tolerance=10000 to avoid
overfull hboxes in the planned page. The pack-
age produces many underfull boxes without any
visible reason. Thus \showboxbreadth and \show-
boxdepth are set to their minimal values. The little
stretchability and shrinkability of \baselineskip is
needed because of the relatively small height of the
planboxes. After the message to the log file comes
the essential part of the macro.

The algorithm of the process. The idea is
that the package proceeds through the entire text
paragraph by paragraph. Each paragraph is put in
a vbox. If this paragraph has room in the current
planbox. then it is simply added to the material so
far; otherwise the paragraph has to be split up into
two parts. The first part goes to the current planbox
and the second one to the next planbox. At the
same time we should finish the current planbox and
switch to the next one. Then the next paragraph is
processed.

Redefinition of \par is the essence of this
idea. Namely, it finishes the vbox by \egroup and
does the necessary actions through \pl@npar (see
Accumulating the paragraphs below). The last of
these actions is starting a new paragraph and also
a new vbox. The output routine is also redefined
(this will be explained later) and \topskip is set to
zero because we're making not a whole page, just a
part of it. Believe it or not, no more preparation
is needed; we can start the current planbox (in
\bbQx):

\newcount\curplanb@xno
\newdimen\curplanb@xsofar
\newif\iffillO
\def\bb@x#l; {\initb@x#l; \fillOFF \st@rtpar)
\def\newsiz@s#l{%

\advance\count#l -3
\hsize\dimen\count#l
\advance\count#l \One
\vsize\dimen\count#l
\advance\count#l \twQ)

\def\initb@x#l; 1%
\wlogCThe next planbox is #I.)
\global\curplanb@xno#l
\curplanbQxsof ar\zO
\newsiz~s\curplanb@xno)

Again, first some initialization for the box (\initbOx).
This means a message to the log file, a note on
the current planbox to \curplanbOxno, resetting
the height of the material in the planbox so far
to zero (there is no material at all) and setting
\hsize and \vsize to the <width> and <depth>
of the planbox. The last step of the initialization
(\fillOFF) is the decision that at the end of the
planbox we don't want to fill the rest space with
\vf il (detailed explanation will come below). Fin-
ishing the initialization we can start to process the
first paragraph:

\def\st@rtpar{%
\advance\curplanb@xsofar \parskip
\vskip\parskip
\setbox\c@rrpar\vbox\bgroup}

TUGboat, Volume 13 (1992), No. 2 197

The reason for putting \parskip into the vertical
list by hand is that with our macros TEX sees only
vboxes and not paragraphs, since we put every
paragraph into \cQrrpar, which is the box finished
in \par.

The normal way of processing is simply to
accumulate the paragraphs. Two things may
happen which can break this accumulation. The
first occurs when the planbox is full, and the second
when a user command is encountered. The former
causes the automatic switch to be invoked (see
the next section). The user commands can be
divided in two classes: the first class contains the
commands related to the parameters of the package.
The second is formed by \nextbox, \nextarea and
\epage. As I mentioned before, the commands of
the second class can be performed only between two
paragraphs, but not inside one.

Switching by hand

The commands \nextbox and \nextarea have
much the same code:

\def \nextarea#l ; {\endplanb@x
\wlogCNew area.)\bb@x#l ;)

\def\nextbox(\endplanbQx
\bb@x\the\toks\curplanb@xno ; 1

\def \endplanb@xC\iff ill@ \vf ill \f i \break)

Both of them should finish the current planbox
(\endplanb@x) and start the next one (\bb@x). At
the time \endplanb@x is invoked we are in vertical
mode (between two paragraphs), hence \break
causes a page break, i.e., it causes the output
routine to be invoked (still see below). But before
this we should decide if a \vfill is needed at
the bottom of the current planbox. In \bb@x the
decision is no (\fillOFF) but you can change it
(the ultimate explanation will come soon).

To start the new planbox in \nextbox, \bb@x
uses the <next> attribute of the planbox while
\nextarea works with its parameter, the <name>
of another planbox. Let me remind you that this
<name> can be the <name> of any planbox with its
successors (see above).

The third command of the second class is
\epage:

\def\epageC\endplanbOx\egroup
\box\p@gesofarbox
\nointerlineskip
\vskip\aboveplanskip
\hboxC%

\loop
\advance\maxplanb@xno \m@ne
\ifvoid\maxplanb@xno

\else \dimen@\wd\maxplanbQxno
C\advance\count

\maxplanb@xno \m@ne
\kern\dimen\count \maxplanb@xno)%

% kern <hdis>
\lower\dimen\count \maxplanb@xno

\hbox~\box\maxplanb@xno)%
% lower <vdis>

C\advance\count
\maxplanb@xno \mOne

\kern-\dimen\count \maxplanb@xno)%
% kern -<hdis>

\kern-\dimen@
% kern -<width>

\f i
\ifnum\maxplanb@xno>\minplanb@xno
\repeat)\wlogCEnd of Page.)%
\rele@seplan}

\def\rele@seplanC%
\global\insc@unt\maxplanb@xno
\advance\maxplanbQxno \m@ne
\advance\count\maxplanb@xno -4
\global\countll\count\maxplanb@xno~

It has a more difficult job to do. After finishing the
last planbox, \epage should construct the whole
page, i.e., put each planbox in its place on the
page. But first it leaves the group started in \bpage
and puts back the part which was ready before the
planned part. The variable \aboveplanskip has
the same function as \topskip for whole pages.
After putting it on the vertical list, an \hbox is
started in order to keep the planned part together.
and separately from the other material.

Inside the \hbox a \loop goes through all the
planboxes. Apart from empty planboxes, placing
a planbox means a horizontal kerning for <hdis>,
a vertical kerning for <vdis>, putting the box at
the point reached. and afterwards coming back to
the origin. The horizontal kerning is done by a
real \kern where \hdis comes from the indirection
through the \count register of the planbox. Vertical
kerning and placing are done by a \lower command.
Again, \vdis is found with the same indirection.
After performing \lower the 'cursor' of the page
goes back automatically to its original place so we
have to 'undo' only the horizontal kerning. This
also includes the width of the planbox.

And finally we should release all the planboxes
(\rele@seplan). This feature is missing from
plain T)$ so \rele@seplan has to do it explicitly.
Resetting \insc@unt is simple because \bpage has
stored its value in \maxplanb@xno. The dimen
allocation register (\countll) was originally four
less than the value of the \count register of the

TUGboat, Volume 13 (1992)' No. 2

first planbox, since this count register points to the
highest of the four dimension registers related to
the planbox.

The output routine. This is an interesting output
routine because the major part of it does nothing
else but give information:

\def\fullb@xoutputC%
\global\setbox\curplanb@xno

\vtop to \vsizeC%
\line{\hfil)\nointerlineskip
\unvbox255)%

\ifnum\null=\the\curplanb@xno
\errhelp{I'll forget

the superfluous text.)
\errmessageCCurrent area is full.

You'll lose a part of your
text on the output)

\wlogCThereJre no more boxes for
this area, so I forget)

\wlog{the superfluous text.
The text needs about:)

\setbox\null\vtopC\unvbox\null)
\wlogivertical : \the\dp\null,

horizontal : \the\wd\null.l . -
\wlogCor any equivalent space.)

\else
\wlogCCurrent planbox is full.)

\f i)
Its task is to save the main vertical list in the box
related to the planbox. The modification
(\line(\hf ill)\nointerlineskip) prevents the
commands \vf il, \vskip, . . . from getting lost.

And now comes the trick of \null! If there is
not enough room in the area for the text, then the
package switches from the last box to \null. Since
\null has <depth>=\maxdimen, the rest of the text
goes to \null. And at the end of \null the output
routine is able to give you the information about
the amount of the lost text.

Setting the parameters. After the interruption
of the output routine let's go back to the first class
of the user commands. The algorithm depends on
three parameters, which are chosen to be exact.
The simplest decision is mentioned twice above: the
user should decide if he/she wants to fill out the
space at the bottom of a planbox (handled with the
\newif construction):

The second parameter gives a choice about hyphen-
ation (for exact explanation of how \pretolerance
works see The T)iJYbook, p. 96):

\def\hyphensONC\pretolerance 300)
\def\hyphensOFFC\pretolerance 10000 3
The third choice is the most important one. You
can turn on and off the automatic switch:

\newtoks\aut@switch
\def\automaticON~\aut@switch=(%

\if dim\curplanb@xsof ar>\vsize
\splitit@p \f i))

\def\automaticOFFC\aut@switch=C\relax))
\def \pl@nparC%

\advance\curplanb@xsofar \ht\c@rrpar
\advance\curplanb@xsof ar \dp\c@rrpar
\the\aut@switch
\unvbox\c@rrpar
\afterassignment\wh@tnext\let\nextt=)

Both definitions is connected to \planpar. This
leads us to the last part of this section:

Accumulating the paragraphs. I hope you
remember that I haven't mentioned how to append
the current paragraph to the current planbox. All I
have written about is how 'to cut out' a paragraph
and to put it into a vbox. But after this, \planpar
is invoked in \par:

% from \bpage
. . .

\def\parC\endgraf\egroup\pl@npar)
. . .
Behaviour of \pl@npar depends on whether \auto-
maticON or \automaticOFF is active. In both
cases it measures the vertical size of the material
in the current planbox and appends the current
paragraph (\c@rrpar) to the vertical list. When
\automat icON is active, \pl@npar checks whether
the current planbox is full or not. If it is, then the
code for the automatic switch (\splitit@p) takes
place (see Automatic switch below).

On the other hand, when \automaticOFF is
active, the material is not handled automatically.
Thus the user himlherself should take care of page-
setting, i.e.. invoking \nextbox or \nextarea at the
necessary points in the text.

You may say that no one will use \auto-
maticOFF since it has only disadvantages. But
this is not true. If two consecutive planboxes have
the same width, then by using \automaticOFF the
page builder of plain T)$ may be executed to
find another (and perhaps better) solution for page
breaking than the automatic switch of my package.

And one more thing about \automaticOFF: it
should do all other things except checking because
the user may switch ON again in the same planbox
where it was switched OFF (even if there is no
reason for doing so).

TUGboat, Volume 13 (1992), No. 2

Let us return to \pl@npar. At the end it looks
ahead for the next token:

If the first token is one of \nextbox, \nextarea or
\epage then that command should be performed,
because they can be performed just outside the
vbox containing the paragraph. As you can see,
\wh@tnext performs at most one command before
starting a new paragraph. Hence, if you want
two commands to be performed, leave a blank
line between them. It has just one effect: the
empty line means an empty paragraph between
the two commands. And if there is no command
at all, a new paragraph is to be started and the
token is to be put back. But this happens just
after the new paragraph, i.e., the vbox has been
started! Fortunately \afterassignment puts the
saved token back right after starting the vbox.

Again, we are at the beginning of a new
paragraph.

Automatic switch

Let's pick up the thread at \splitit@p:

This macro is invoked when the current para-
graph has no room in the current planbox. First
\m@veextra reduces the vertical size of the para-
graph to the appropriate size by removing the last
lines of it. Then the remaining part is appended to
the current planbox. This planbox is finished and a
new one is initialized (not started!). The removed
part of the paragraph is then retypeset with the
new \hsize. If this amount of material is too much
for this planbox, then the whole process is repeated.

The macro \mQveextra removes the necessary
lines one by one with \rem@velastline:

\def\m@veextra{%
\global\setbox\c@rrpar\vbox{%

\unvbox\c@rrpar \rem@velastllne)%
\global\setbox\extrat@xt\vbox~%

\unvbox\extrat@xt\box\l@stline)%
\ifdim\curplanb@xsofar>\vsize

\let\next\m@veextra
\else \let\next\relax \fi \next)

It also accumulates these lines in \extrat@xt, and
it goes on until the vertical size of the material is
less than or equal to \vsize. One single line is
removed by \rem@velastline:

\def\rem@velastlineC%
\global\setbox\l@stline\lastbox
\ifvoid\l@stline

\global\advance\curplanb@xsof ar
-\lastskip \unskip

\unpenalt y
\global\advance\curplanbQxsofar

-\lastkern \unkern
\let\next\rem@velastline

\else
\global\advance\curplanbQxsof ar

-\ht\l@stline
\global\advance\curplanb@xsofar

-\dp\l@stline
\let\next\relax

\f i \next)

The macro works with W ' s \lastbox and
\un.. . operations. If a box could be removed,
the macro returns it in \l@stline. Otherwise
\rem@velastline tries to remove the last item in
the vertical list and updates \curplanb@xsof ar.
Unfortunately there is no proper \un. . . command
for each type of item, but the commands for
the missing types ("whatsit", mark, insertion) are
mode-independent, so in general you can avoid
their being appended to the vertical list. (I hope
this feature of 7&X won't cause too much trouble
for you and for the package.) Moreover there is
no opportunity to check whether the last item is
glue or not, because there is no \if skip command
to distinguish \zQskip=Opt plus Opt minus Opt
from let's say \parskip=Opt plus lpt. Thus
brute force is used instead of checking the last item
with \if. . . operations.

Notice that \extrat@xt contains only lines of
text, i.e., neither glue items nor kerns nor penalties,
and the lines are placed in reverse order. They will
be reversed again in \r@typeset:

\def \r@typesetC%
\global\setbox\extrat@xt\vbox~%

\unvbox\extrat@xt
\global\setbox\n@xtline\lastb~x~%

200 TGGboat, Volume 13 (1992), No. 2

\setbox\n@xtline\hbox(\unhbox\n@xtline
\unskip>%

\global\setbox\c@rrpar\vboxC\noindent
\unhbox\n@xtline}%

C\parskip\zQskip
\ loop

\global\setbox\extrat@xt\vbox~%
\unvbox\extrat@xt
\global\setbox\n@xtline\lastbox3%

\global\setbox\c@rrpar\vboxC%
\unvbox\c@rrpar \ rem@velast l ine

\@penhbox\l@stl ine
\setbox\n@xtline\hbox~\unhbox\n@xtline

\unskip}%
\noindent \unhbox\ l@st l ine\ %
\unhbox\n@xtline}%

\ i fd im\ht\extrat@xt>\z@ \repeat})
\def\@penhbox#1{\setbox#l \hboxC\unhbox#l%

\unskip \unskip \unpenalty})

Before examining the code. let's go through the idea.
It seemes to be simple: join the lines again and let
the line breaking algorithm form the new paragraph.
Unfortunately the task is more difficult. The main
problem is that because of the different \hsize, the
breakpoints in the new paragraph will be at other
points than they were in the original paragraph.
The line breaking algorithm puts \ r igh tsk ip at
the end of every line. So \ r igh tsk ip is to be
removed from the original ends of lines.

At the end of a line a hyphenation may occur.
too. The trade-off is to check every line end with
a number of complicated macros or to leave the
task of correcting the bad hyphenations to the user.
Because of the easy correction I decided to use the
latter option.

On the other hand, joining the lines means
that the first couple of lines form the beginning
of the new paragraph and the next line is joined
to the last line of the partial paragraph. And
the last line of a paragraph contains not just
\ r i gh t sk i p but three more items related to \par,
namely, \penaltyl0000, \hskip\parf i l l s k i p and
\penalty-10000 (The W b o o k , p. 100). The third
item is discarded at the line break but the two other
items also should be removed before the join. The
macro \@penhbox removes all three items from its
parameter box.

Last but not least, there is no space between
the last word of a particular line and the first word
of the next line. Hence we should put a space
before each line except the first one. The first line
differs from the others in another respect: We don't
need to apply the joining algorithm just discussed
because there is no last line of the empty paragraph.

Let's go back to the code! In the code up
to the C before the \parskip\zQskip command
the first line is retypeset in three steps. First the
line is removed from \ext ra tQxt (there is no need
to use \remQvelast l ine because \ext ra t@xt only
contains the lines). Then \ r igh tsk ip is removed.
Finally. the line is put into \c@rrpar. Because
\c@rrpar now contains not a real paragraph but
just the second part of it, \noindent is inserted
before the line.

The other lines will be appended according
to the algorithm. First the line is removed from
\ext ra t@xt the same way as the first line. Then
the last line of the paragraph is removed with
\rem@velastl ine. Both lines are 'peeled' and then
joined with a space between them. We should insert
\noindent before \ l Q s t l i n e because this line may
be the first in the paragraph; so the paragraph may
be restarted at this point. This is the reason for
setting \parskip to \z@. When a paragraph starts
\parskip is automatically inserted. In our case
the paragraph may start again but we don't need
another \parskip.

The whole action is repeated until all the lines
have been joined together.

And in the end. . .
This package is developed to handle pure text. It
was created in such a way that it avoids interfering
with \p la in w whenever possible. On the other
hand the package has to change things deep inside
w. I'm sure these changes mean restrictions of
the usage but only experiments can discover all of
them. However, I think that independently from
the restrictions the package is useful and helps to
create documents with a better look.

Already at the moment there is one possible
improvement: the multipage version of the package.
This needs only technical, and not fundamental
changes, but it gives the possibility of making whole
newspapers. I hope sooner or later that version will
come out.

My only reference was The W b o o k . If you
find my article does not explain a notion you will
find the best possible answer in this book.

At last: I hope you will enjoy this 'pagemaker'.

o Pbter Huszar
Budapest
Bogdanffy 6t 10.b.
H-1117 Hungary
hl612husC!ella.hu

TUGboat, Volume 13 (1992), No. 2 201

The Elementary Particle Entity Notation tor), names of monopoles (E for electric,

(PEN) Scheme M for magnetic);

Michel Goossens and Eric van Herwijnen abbreviations that are initials or bits of
words (exp, for experimental; min, for

Abstract minimum) ;

In this article an Elementary Particle Entity Nota- 0 the 'd' in integrands (e.g. dp).

tion (PEN) scheme is proposed for use with m In all cases, following these rules will help
and SGML. This scheme not only assures the typo- the reader understand at first glance what one
graphic correctness of the printed symbols, but also is talking about. Some instances in which it
eases the automatic extraction of information about is important to use the correct symbol, in the
the article by the recognition of the entity names. correct type, are shown in Table 1.

1 Typographical rules for scientific texts

In scientific texts the printed form of a symbol of-
ten implies a meaning which is not easily captured
by generic markup. Therefore authors using some
form of generic coding (like Ul$$ or SGML) need
to know about typographical conventions. The fol-
lowing is a brief summary of the most important
rules for composing scientific texts [I , 21.

1. The most important rule is consistency: a
symbol should always be the same, whether it
appears in a formula or in the text, on the main
line or as a superscript or subscript. That is,
in w, once you have used a symbol inside
mathematics mode ('$'), always use it inside
mathematics mode. Inside math mode, Q$ by
default prints characters in italics.

For scientific work, however, quite a few
symbols must be set in roman (upright)
characters1. This is the case for the following
families of symbols, which represent the names
of:

units. such as g, cm, s, keV. Note that
physical constants are usually in italics,
so units involving constants are mixed
roman-italics, e.g. GeV/c (where the c is
italic because it symbolizes the speed of
light, a constant);
particles, for example p, K, q, H. For el-
ementary particles the PEN (Particle En-
tity Notation) scheme is proposed (see the
next section);
standard mathematical functions (sin. det,
cos, tan, Re, Im, etc.). Use the built-in

functions for these (\s in , etc.);
chemical elements, for example Ne, 0, Cu;
numbers;
names of waves or states (p-wave) and co-
variant cou~linns (A for axial, V for vec-

2. Let your word processor do as much work as it
can. Do not try to change your system's de-
faults too much; this will decrease the porta-
bility and maintainability of your documents.
l$$ implements a lot of the rules mentioned
above by default in math mode.

3. Do not add blanks at random to make formulae
look "nicer".

4. Refrain from using specific page layout com-
mands (like \break with Q$). You will forget
that you put them in your text and later won-
der why some text is badly adjusted or starts a
new line.

2 Entity definitions for elementary
particles

In texts on high energy physics frequently re-
occurring strings are the names of elementary par-
ticles. For example, the ZO particle can be coded in
various different ways with M W : $\mbox(Z)-0$,
$\mathrmCZ-0)$ and Z$-O$ all achieve the same ty-
pographical effect, a roman Z with a superscript
0. In the interest of standardization and typing
convenience, we propose below an "entity" naming
scheme, which will not only relieve the user from
having to worry about the correctness of what he
types, but also will allow an automatic extraction
of the particle names from the input file, so that it
will be easy to enter data about an article using this
convention into a database of abstracts.

The naming scheme uses a notation which takes
the following constraints into consideration:

1. The notation should be able to describe all par-
ticles in the particle data summary tables from
the "Review of Particle Properties" [3] and any
future extension to these.

2. The names should not exceed eight characters.
This is the maximum length for entities in the
SGML reference concrete syntax [4]. Staying

* - \

within this limit means that the notation can
With I4m roman type in maths mode can be be used with most SGML applications.

achieved by the \mbox or \mathrm commands.

roman t v ~ e
A ampere (electric unit)

electron (particle name)
gluon (particle name)
litre (volume unit)
metre (length unit)
proton (particle name)
quark (particle name)
second (time unit)
tonne (weight unit)
volt (electric unit)
Z boson (particle name)

TUGboat, Volume 13 (1992), No. 2

1 italic t v ~ e
A atomic number (variable)

electron charge (constant)
gravitational constant
length (variable)
mass (variable)
momentum (variable)
electric charge (variable)
c .m. energy squared (variable)
time (variable)
volume (variable)

Z atomic charge (variable)

Table 1: Example of differences in meaning of a symbol depending on the type.

3. Common particles such as protons and elec-
trons should have short and simple names.

4. Items that are indicated by superscripts are in-
dicated before items that are indicated by sub-
scripts.

Due to the eight character limitation the mass
could not be added to the name. This means that in
general an entity on its own is not adequate to unam-
biguously identify a particle, cf. ~ (549) and ~(1300)
are both referred to as Pgh. Including mass depen-
dences into the names is not a good idea anyway,
since the mass can change with time when more
precise measurements become available. The am-
biguity was solved by adding a letter to the end of
the name where a mass appears in the name in the
particle data summary tables. Thus ~ (549) is re-
ferred to as Pgh while ~(1300) is referred to as Pgha.
Higher letters correspond to higher masses, in the
order given in the tables.

The PEN scheme is independent of any text
processing system. We have implemented it in TEX
(in such a way that it may be used in all macro
packages, e.g. U r n) and SGML. The imple-
mentation will print particle masses, which will be
regularly updated according to the Review of Parti-
cle Properties publication. It is constructed so that
the PEN name can be used in both mathematics
and text mode.

2.1 Principles of the Particle Entity
Notation (PEN)

Starting at the left, a name is built from the follow-
ing characters:

2. The following letters act as an escape to signal
a special interpretation of the string. Present
escape sequences are:

0 a for anti particle (normally represented
visually with a bar over the particle's
name)

0 b for bottom particle
0 c for charmed particle
0 g for indicating the subsequent letter is

Greek. The correspondence between Latin
and Greek letters is based on the notation
for mathematical Greek characters used by
the AAP mathematical formula applica-
tion [5] :
<!NOTATION greek2 PUBLIC "+//ISBN

1-880124::NISO//NOTATION GREEK-2//ENU>

This one-letter correspondence is shown in
Table 2.

0 q for quark particle
0 s for strange particle

S for supersymmetric particle
t for top particle

3. The one-letter name of the particle
4. Optionally followed by other information

0 z for zero, i for one, ii for two, iii for
three, i v for four

0 m for minus, p for plus, pm for plus/minus
0 pr for prime
0 st for asterisk (star)

L for left-handed, R for right-handed
0 any one-letter particle name

1. Start the entity with a recognized string (in
the following this was chosen as uppercase P).
This is necessary to uniquely identify entities as
following the PEN convention.

TUGboat, Volume 13 (1992); No. 2

2reek name code
alpha a
beta b
gamma g
delta d
epsilon e
zeta z
eta h
theta 9
iota i
kappa k
lambda 1
mu m
nu n
xi x
omicron o
pi P
rho r
sigma s
tau t
upsilon u
phi f
chi c
psi Y

.. omega w

;reek name code
A Alpha

Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu
Nu
Xi
Omicron
Pi
Rho
Sigma
Tau
Upsilon
Phi
Chi
Psi
Omega

Table 2: The AAP codes for the Greek letters.

2.2 Particle encodings according to the
PEN Scheme

In table 3 we show how to encode the particles from
the summary tables of particle properties in the
"Review of Particle Properties" [3] using the PEN
convention. In the rightmost column we give the
computer name of the particle, as defined by "A
Guide to Experimental Elementary Particle Physics
Literature (1985-1989)" [6]. This is the name to
be used when searching the Particle Data Group's
databases. Notice that these names cannot be used
for either TEX or SGML, as they do not satisfy the
constraints of the PEN scheme as defined above.
When a name is marked as "not available", some-
times a charged or neutral version exists (not given
in the table).

The T)jX implementation is available as a style
file pennames .sty, which should be input in the
usual way at the start of the document for TEX or
specified as a minor option on the \documentstyle
command for IPW. To obtain the symbol required,
prefix the PEN name by a backslash ('\').

The SGML implementation exists as a public
entity set, that can be included in SGML documents
with the following entity definition:

<!ENTITY % PEN PUBLIC
"+//ISBN 92-9083-041-7::CERN//ENTITIES

Particle Entity Names//EN1'>

Refer to a particle entity by prefixing its name by
an ampersand ('&') and suffixing it with a semi-colon
(' ; '), e.g. &Pgr ; would give p(770).

3 How to get the files

A file pennames .sty with the TFJ particle name
definitions, pennames.entities with the SGML
entity names, and pennames.ps containing the
Postscript source of this document, are available via
anonymous ftp as follows (commands to be typed by
the user are underlined):
ftp cernvm.cern.ch
Trying 128.141.2.4 . . .
220-FTPIBM at cernvm.CERN.CH..
Name (cernvm:goossens): anonymous
230 ANONYMOU logged in with no special a.. .
Remote system type is VM.
f tp> cd tex. 802
250 Working directory is TEX 802 (ReadOnly)
f tp> get pennames. sty
ftp> get pennames.entities
f tp> get pennames. ps
ftp> quit -

References

[I] International Union of pure and applied Physics.
Symbols, Units, Nomenclature and Fundamental
Constants in Physics. Physica, 146A:l-67, 1987.

[2] D.E. Lowe. A Guzde to international recommen-
dations on names and symbols for quantities and
on units of measurements. World Health Orga-
nization, Geneva, 1975.

[3] Particle Data Group. Review of particle proper-
ties. Physics Letters B, 239:l-516, April 1990.

[4] E. van Herwijnen. Practical SGML. Wolters-
Kluwer Academic Publishers, Boston, 1990.

[5] American National Standards Institute. Ameri-
can National Standard for Electronic Manuscript
Preparation and Markup. ANSI/NISO 239.59-
1988, 1988.

[6] Particle Data Group. A Guide to Experimental
Elementary Particle Physics Literature (1985-
1989). Lawrence Berkeley Laboratory, LBL-90
Revised, UC-414, November 1990.

o Michel Goossens
Eric van Herwijnen
CERN, CH-1211 Geneva 23,

Switzerland
goossens@cernvm.cern.ch
eric@cernvm.cern.ch

TUGboat , Volume 13 (1992), No. 2

Table 3: PEN names for elementary particles in PDG list

PEN I symbol I conventional name I computer name
Gauge and Higgs bosons

I I

p WP
PWm
PZz
PHz
PHpm
PWR
PWpr
PZLR
PZgc

PZgy
PZge
PZi
P Az

Pgne
Pagne

PPgm
Pagngm
P P g t
Pagngt
Pe

Pep
Pem

p gm
pgmm
Pgmp
Pg t
PLpm
PLz
PEz

p a
P a m
p a p
Pmpm
p m z
Pgh
Pgr
pgo
Pghpr
Pf z
Paz

Pgf
P h i a
P b i
P a i
Pf ii
Pf i
Pgha

P a i i
Pgoa
Pf z a
Pf i a

v e
-
Ve

VP -
"P

VT -
V T

e
e+
- e

P
P -
/I+
T

L~
LO

E0
Lig

7r
-

A

A+

A *
PO

77
~ (770)
w (783)
77'(958)
fo (975)
ao (980)
4(1020)
hl(1170)
bl(1235)
a1 (1260)
f2(1270)
fi(1285)
~(1295)
~ (1300)
a2 (1320)
~ (1 3 9 0)
fo(1400)
fi (1390)

gamma
W boson
W plus
W minus
Z zero
Higgs zero
Higgs plus/minus
right-handed W
W prime
left-right handed Z
Z chi
Z psi
Z eta
Z one
axion

Leptons
electron neutrino
anti electron neutrino
muon neutrino
anti muon neutrino
tau neutrino
anti tau neutrino
electron
positron
e minus
muon
mu minus
mu plus
tau
charged lepton
stable neutral heavy lepton
neutral para- or ortho-lepton
t Unflavored Mesons (S=C=B=O)
pion
pi minus
pi plus
pi plus/minus
pi zero
eta
rho
omega
eta prime
f zero
a zero
phi
h one
b one
a one
f two
f one
eta 1295
pion 1300
a two
omega 1390
f zero 1400
f one 1420

GAMMA
W
W+
W-
z
not ava i lab le
HIGGS+-
not ava i lab le
WPRIME
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
A X I O N

NUE
NUEBAR
NUMU
NUMUBAR
NUTAU
not ava i lab le
not ava i lab le
E+
E-
not ava i lab le
MU-
MU+
not ava i lab le
LEPTON+-
not ava i lab le
not ava i lab le

PI
PI-
PI+
PI+-
PI0
ETA
RHO (770)
OMEGA(783)
ETAPRIME(958)
FO(975)
AO(980)
PHI (1020)
Hl(1170)
not ava i lab le
Al(1260)
F2(1270)
Fl(1285)
ETA(1295)
not ava i lab le
A2(1320)
not ava i lab le
F0 (1400)
Fl(1420)

TUGboat. Volume 13 (1992), No. 2

Table 3: PEN names (continued)

PEN
Pghb
Pgra
Pf i b
Pf i i p r
Pf zb
Pgob
Pgo i i i
Pgpi i
Pgf a
P g r i i i

Pgrb
Pf i i a
Pgf iii
Pf i i b
Pf i v
Pf i i c
Pf i i d

PK
PKpm

P KP
PKm
PKz
PaKz
PKgmiii
PKei i i
PKzS
PKzL
PKzgmiii
PKzei i i
PKst
PKi
PKsta
PKia
PKstz
PKst i i
PKstb
PKii
P K s t i i i
PKstiv

PDpm
PDm

PDP
PDz

PaDz
PDstpm
PDstz
PDiz
PDst i iz

symbo l
70440)
,41450)
fl(1510)
fi(1525)
fo(1590)
~ (1 6 0 0)
w3 (1670)
nz(1670)
4(1680)
p3 (1690)
~ (1700)
fi(1720)
43 (1850)
f2 (2010)
fd(2050)
f2 (2300)
f2(2340)

K
K
K+
K -
KO -
KO
KLL3
Kc3
KO,
K"L
KE3
Kt3
K'(892)
Kl(1270)
K'(1370)
Kl(1400)
K: (1430)
K,*(1430)
K"(1680)
Kz(1770)
K:(1780)
KI(2045)

convent ional n a m e

rho 1450
f one 1510
f two prime
f zero 1590
omega 1600
omega three
pi two
phi 1680
rho three
rho 1700
f two 1720
phi three
f two 2010
f four
f two 2300
f two 2340
range Mesons (S = i l , C=B=O)
kaon
K plus/minus
K plus
K minus
K zero
anti K-zero
K mu three
K e three
K zero short
K zero long
K zero mu three
K zero e three
K star
K one
K star (1370)
K one (1400)
K star zero (1430)
K star two (1430)
K star (1680)
K two (1770)
K star three

compu te r n a m e
ETA (1440)
not ava i lab le
Fl(1510)
F2PRIME(1525)
FO(1590)
not ava i lab le
OMEGA3 (1670)
PI2 (1670)
PHI(1680)
not ava i lab le
RHO(1700)
F2(1720)
PHI3(1850)
F2(2010)
F4(2050)
F2(2300)
F2(2340)

K
K+-
K+
K-
KO
KBARO
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
Kl(1270)
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le
not ava i lab le / K star four

C h a r m e d Mesons (C=+ l)
D* (D plus/minus I D+- - .

D minus
D plus
D zero

4
D I anti D zero I DBARO

D star plus/minus
D star zero
D one zero

~ ~ (2 4 6 0) ' I D star two zero 1 D2*(2460)0
C h a r m e d S t range Mesons (C=S=+ l) "

PsDp D: D s plus D/S+
PsDm D; D s minus D/S-
P s ~ s t Db D s star D/S*
PsDipm 1 ~ i l (2536) ' 1 D s one plus/minus not ava i lab le

B o t t o m Mesons (B=+l' l

TUGboat, Volume 13 (1992), No. 2

Table 3: PEN names (continued)

PEN
P BP
PBm
PBpm
PBz
Pcgh

PJgy
Pcgcz
Pcgc i
P c g c i i

P ~ Y
P ~ Y a
Pgyb
P ~ Y c
Pgyd
pgu
Pbgcz
Pbgci
Pbgc i i
PgUa
Pbgcza
Pbgcia
Pbgc i i a

pgub
PgUc
PgUd
PgUe

conventional name

PP
Pn
PNa
PNb
PNc
PNd
PNe
PNf

PNg
PNh
PNi

PN j
PNk
PN1
P N ~

PgDa
PgDb
PgDc
PgDd
PgDe
PgDf
PgDh
PgDi

PgDj
PgDk

B plus

P
n
N(1440)Pll
N(1520)D13
N(1535)Sll
N(1650)Sll
N(1675)Dls
N(1680)Flj
N(1700)D13
N(1710)Pll
N(1720)P13
N(2190)Gl~
N(2220)H19
N(2250)Glg
N(2600) I i~ l

A(1232)P33
A(1620)S31
A(1700)D33
A(19oo)s31
A(1905)F35
A(l910)Psl
A(192O)P33
A(1930)D35
A (1 9 5 0) ~ ~ ~
A(2420)H3,11

B minus
B plus/minus
B zero
eta c
J psi
chi c zero
chi c one
chi c two
psi
psi 3770
psi 4040
psi 4160
psi 4415
Upsilon
chi b zero
chi b one
chi b two
Upsilon (2s)
chi b zero (2P)
chi b one (2P)
chi b two (2P)
Upsilon (3s)
Upsilon (4s)
Upsilon (10860)
Upsilon (11020)

N Baryons (S=O, I=1/2)
proton
neutron
N (1440) P 11
N (1520) D 13
N (1535) S 11
N (1650) S 11
N (1675) D 15
N (1680) F 15
N (1700) D 13
N (1710) P 11
N (1720) P 13
N (2190) G 17
N (2220) H 19
N (2250) G 19
N (2600) I 1,11 , .

A Baryons (S=O, I=3/2)
Delta (1232) P 33
Delta (1620j S 31
Delta (1700) D 33
Delta (1900) S 31
Delta (1905) F 35
Delta (1910) P 31
Delta (1920) P 33
Delta (1930) D 35
Delta (1950) F 37
Delta (2420) H 3.11

\ ,

A Baryons (S=-1. I=O)

com~uter name

B-
B+-
BO
ETA/C(lS)
J /PSI (lS)
CHI/CO(lP)
CHI/C1(1P)
CHI/C2(1P)
PSI(2S)
PSI (3770)
PSI (4040)
PSI (4160)
PSI (4415)
not a v a i l a b l e
CHI/BO(lP)
CHI/Bl(lP)
CHI/B2(1P)
UPSI(2S)
CHI/B0(2P)
CHI/B1(2P)
CHI/B2 (2P)
UPS1 (3s)
UPS1 (4s)
UPSI(10860)
UPSI(11020)

N
N(1440P11)
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e

DELTA(1232P33)
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e
not a v a i l a b l e

PgL
PgLa
PgLb
?gLc

A
A(1405)Sol
h(1520)Do3
A(l6OO)Pol

Lambda
Lambda (1405) S 01
Lambda (1520) D 03
Lambda (1600) P 01

LAMBDA
LAMBDA(1405SO1)
LAMBDA(1520D03)
not a v a i l a b l e

TUGboat, Volume 13 (1992). No. 2

Table 3: PEN names (continued)

PgSp
Pg Sz
PgSm
PgSa
PgSb
PgSc
PgSd
PgSe
PgSf
pgsg
PgSh
PgSi

PEN symbol conventional name
'gLd A(1670)Sol Lambda (1670) S 01
'gLe A(1690)Do3 Lambda (1690) D 03
'gLf A(1800)Sol Lambda (1800) S 01
'gLg h(l810)Pol Lambda (1810) P 01
'gLh A(1820)Fos Lambda (1820) F 05
'gLi A(1830)Dos Lambda (1830) D 05
'gLj h(1890)Po3 Lambda (1890) P 03
?gLk A(2100)Go7 Lambda (2100) G 07
PgLl A(2110)Fos Lambda (2110) F 05
PgLm A(2350)Hos Lambda (2350) H 09

PgXa 8(1530)P13
E(1690)

PgXc 2(1820)D13
PgXd E(1950)
PgXe E(2030)

computer name
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable

Sigma plus
Sigma zero
Sigma minus
Sigma (1385) P 13
Sigma (1660) P 11
Sigma (1670) D 13
Sigma (1750) S 11
Sigma (1775) D 15
Sigma (1915) F 15
Sigma (1940) D 13
Sigma (2030) F 17

C Barvons (S=-1, I = l)

Sigma (2250)
8 Baryons (S=-2, I=1/2)

Xi zero I XI0

SIGMA+
SIGMA0
SIGMA-
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
not avai lable

Xi minus
Xi (1530) P 13
Xi (1690)
Xi (1820) D 13
Xi (1950)

X I -
not avai lable
not avai lable
not avai lable
not avai lable

(Xi (2030) 1 not avai lable
R Baryons (S=-3, I=O)

P~0m I 0- I Omega minus I OMEGA- -
PgOma 1 O(2250)- I omega (2250) minus I OMEGA(2250) -

Charmed Barvons (C=+ l)
PC&P A: charmed Lambda plus
PcgXz z.0 -C charmed Xi zero
PCRXP '=+ -C charmed Xi plus

LAMBDA/C+
not avai lable
not avai lable - -

PcgS 1 Ci(2455) (charmed sigma 2455 not avai lable

A "
7 photino

PSgxz go neutralino
PSZz ZO supersymmetric Z zero
PSHz HP Higgsino
PSgxpm 2'i chargino
PSWpm w & supersymmetric W plus/minus
PSHpm p~ charged Higgsino

S u ~ e r s v m m e t r i c Part icles
PHOTINO
NEUTRALINO
Z I N O
HIGGSINO
CHARGINO
not avai lable
not avai lable -

1) scalar neutrino
PSe i5 scalar electron
psgm f i scalar muon
PSgt T scalar tau
psq 4 scalar quark
Psg g g luino

not avai lable
not avai lable
not avai lable
not avai lable
not avai lable
GLUINO

TUGboat, Volume 13 (1992). No. 2

From 'I'EX to I4w

Maria Luisa Luvisetto and Enzo Ugolini

1 Introduction

Our Institute is a very old m site (since 1982)
and users have basic or good knowledge of w,
but would also like to use I P m without the need
of reading manuals and documentation. For such
users we have prepared a fast reference with guide-
lines for article setup (title, authors, page num-
bers, etc.), page setup (section, subsections), font
selection, mathematics, tabular information (item,
subitem, tables, etc.), index and bibliographic refer-
ence, comparing with I P w commands. Tools
are provided to help in editing the document and
inserting complex elements, such as tables.

2 IQw Syntax

I P w defines the logical design of a document and
provides environments for title, author, abstract,
and the like. Environments are structures start-
ing with \begin and ending with the corresponding
\end statement. Each document unit is enclosed
in a structure, the whole document is delimited
by \begin{document) and \endidocument), where
begin and end have the same function as { . . .) in
m . A I4m input looks like the following:

\documentstyle [12pt] {article)
%
% preamble section
% add other options in [. . .]
% add size and paging options here, if any
% add definitions
%
\title(Any Title)
\authoriAny N. Author)
%
\begin{document)
% document structure init
\maketitle
% produce tit le from definition
%

\beginCabstract)
. . . abstract text . . .

\endCabstract)
%

\section(First)
. . . section text . . .

%

%
\sect ion(Last)

. . . section text . . .
%

\begin{thebibliography)
\bibitem(bib:one) . . . bib text . . .
. . .
\bibitem(bib:end) . . . bib text . . .

\end(thebibliography)
%

\tableofcontents
%
\end{document)

We will limit our description to articles and to
basic typesetting, but can refer to any other
style your local installation supports. In general.
each document is made at least of a style defini-
tion command (preamble), the document structure
and some text (the document body), an optional
abstract, a few sections, reference information and
a table of contents, with reference and index at the
end of the document. Macro definitions and style
changes are declared in the preamble.

I4m changes font size for titles and au-
thors, automatically centers both title and au-
thors, adds document date, numbers sections and
tabular information, etc. For articles, the sec-
tioning commands are: \section \subsection
\subsubsection \appendix

The input format is similar to m, with the
escape character \ and the same special char-
acter set (# $ % & '- - ^ \ ()). Basic T)jX
macros are common to I P W . Obviously struc-
tures (\begin . . . \end) and braces (C. . .)) must
be balanced. Environments can have optional pa-
rameters that are enclosed in brackets. Options
must be specified immediately after the environment
call, multiple options are separated by commas, no
blank is allowed inside the brackets.

As in m, the document can be split into mul-
tiple input files: these are included uncondition-
ally using \input{file-name) or conditionally us-
ing \includeCfile-name) to include only the files
named in the preamble through the command:

\includeonly(file-1,file-2,~%-3. ..)
If the preamble does not contain an \includeonly
command all files are included. If \includeonly has
an empty argument list, no file is included.

3 Fonts

Font selection in I 4 m is almost the same as in m .
The default active font is roman, the default inactive
font is ztalzc. Font size is selected at document level:
the default is 10 pt.

Furthermore, I4m provides a useful tool to
emphasize text elements, the \em environment. The

TUGboat, Volume 13 (1992), No. 2

\em command switches the default font from the for large bold letters. Examples of the \ t i ny , \Huge
active one to the inactive; thus if the current font and \ large\bf follow:
is roman, the emphasized text is printed in italic,
and vice versa. For entire sentences or paragraphs, F~~~ Font Font
the emphasized mode is declared as a structure, i.e. Users can define other fonts not orovided in the
\beginCem) . . . \endCem). As a COnSeqUeIlCe of default set, as in w, with the
the switching feature, in a long emphasized text

\newfontC\symbf~CcmsylO scaled\magstepl)
typeset in italic, a shorter fragment can be empha-
sized in roman, as in the following example: where \symbf is name of the new font that is avail-

A long emphasized text can include emphasized able in the cmsylO font description file in an enlarged

strings in roman, inside an italic sentence. size. To typeset some text in the new font, just call it

The above fragment is produced by the follow- any other font: { \ s ~ b f \ s ~ b o l (2 6)) to write

ing source code: the symbol with character code 26 (i.e. C).

\begin{em) A long emphasized t ex t can
include (\em emphasized s t r ings) wr i t ten
i n {\em roman), ins ide an i t a l i c
sentence.\end(em)

Other predefined fonts are:
bf bold Bold font
sf sans serif Sans Serif font
s l slanted Slanted font
sc small caps SMALL CAPS FONT

tt type writer Typewriter fon t

Fonts are declared as in TJ$ (i.e. {\bf text)).
Accents and symbols are typeset as in m. Other
fonts are defined for mathematical use, like greek
letters (limited set), calligraphic ones (only upper-
case), plus the mathematical italic (\ m i t) that is
the default type for maths and mathematical bold
(\boldmath) fonts.

In technical manuals, especially when reporting
computer programs. it is required not only to use
a non-proportional font as \tt, but also to repro-
duce the text as it stands, including producing a
mark such as for required spaces. For this purpose
IPW has four commands:
\begin{verbat i m) . . . \end{verbatim),
\begin{verbatim*) . . . \endCverbatim*),
\verb, \verb*

The * commands typeset , for blanks. The
verbatim environment typesets the text on a new
line; thus i t is used for long insertions. The \verb
command is used for short strings inside the current
line. The text is delimited by any pair of identical
characters such as ! as in the following example:

To display blanks in computer programs type
\verb*! i n t 1 , k ; !, the typeset result will be
in t , l , k ;

Font size can be changed with the commands
\ t i ny or \small for smaller fonts, or \Large
or\Huge for bigger fonts, followed by the font specifi-
cation if different from roman, so we have \ large\bf

4 Notes

IPW provides two types of notes: footnotes and
marginal notes. The syntax for footnotes is similar
but not identical to TEX. In TEX footnote number-
ing is required (number and text enclosed in braces)
and number generation is not handled, thus the user
must take care of footnote numbering.

In IPW the number is a positive integer auto-
matically stepped for the next footnote command.
The numbering can be changed at user's will as an
option. The syntax is: \ footnote h u m] {text)
where num is the optional number for the following
footnote text.

Marginal notes are not numbered and are
placed in the free paper margin with the first line
even with the line of text in which the note is in-
serted, as happens here. The note is placed accord- note
ing to the style in use: it is placed on the right
for one-sided documents, on the outside margin for
two-sided printing, in the nearest margin for multi-
column style.

The marginal note is produced by \marginpar
and different text can be produced for left and right
margin as an option. The syntax is:
\marginpar [left-text] {right-text)

5 I t e m Lists

has extensive capabilities to handle tabular
information, both in the form of tables (see Sec-
tion 6) and in the form of aligned text.

IPW defines a set of structures to format lists
of items or quotations. The structures are: quote,
quotation, i temize, enumerate, descr ip t ion. In-
side the structure, each entry is declared through the
\ i tem command.

The quote environment is used for short quo-
tations, the quotat ion environment for longer ones.
The "quoted" text is indented, as shown here.

IPw is able to handle quotations.
Each quotation is indented.

210 TUGboat, Volume 13 (1992), No. 2

The above example is produced by:

\beginCquote)
\LaTeXC) i s ab le t o handle quotat ions.

Each quotat ion is indented.
\end{quot e)

More useful in technical documents are the
i temize and enumerate environments described in
the following example.

Each item in a list is marked by a bullet.
0 Item lists can be nested.

1. Items in enumerated lists are labelled by
numerals.

2. Lists can contain two or more items.
3. If there is only one item, there is logically

no list.
Blank lines are ignored.
In the input file, indent lines to show the item
list structure.

Item lists can be nested in complex manners,
as shown by the above example produced by the
following code:

\begin{itemize)
\ i tem Each item i n a . . .
\ i tem Item l i s t s can be . . .
\begin{enumerate)
\item Items i n . . .
\item L i s t s can . . .
\item I f there i s . . .

\end{enurnerate)
\item Blank l i nes are . . .
\item In the input f i l e , . . .

\end{itemize)

Another very useful feature to format item lists
is the dec la ra t ion environment. In this environ-
ment an item has a name, which is typeset in bold-
face, and is followed by its description, which is type-
set as itemized text:

X nX delete one or 'n' characters starting at cursor
position.

dnG delete all lines starting with the current line
up to line 'n'.

The commands for the above example are:

\begin{description)
\item[X nX1 de le te one o r 'n ' char . . .
\itemCdnGl de le te a l l l i n e s s t a r t i n g . . .

\endCdescription)

6 Tables

In tables are handled by the "settabs" com-
mands, that can either create fixed width columns

or use a template to describe the table fields. I4M
has two environments for tables: the \ tabbing and
the tabular environments. The first one emulates
m commands with template description, while the
second one enables the user to create very complex
tables in an easy way. Furthermore I4" code for
tables is much more readable than ?IEX one.

The tabbing environment handles tables of any
length that span across pages. The tab stops can be
set either in a prototype or as columns are typed.
The tabbing information is a structure started by
\begin{tabbing) and ended by \endCtabbingl.
The command \= sets the tab stop, \> moves to
the next stop. The element of the first column has
no tab information, and the line is ended by \\. If
the line represents a prototype, it ends with \ k i l l .

As a tabbing example consider the following ta-
ble describing how to type some special char-
acters in normal text:

\{ { open brace
} close brace

\$ $ dollar sign
\-> - underscore
\% % percent

This table makes use of a prototype line and is
generated by the following code:

\begin{center)
\begin{minipage){\hsize)
\begin{tabbing)
xxxx \= xxxxxxxx \= \ k i l l
\verb!\{! \> \{ \> open brace \ \
\verb!\) ! \ \ \> close brace \ \
\verb!\$! \> \$ \> do l l a r s ign \ \
\verb! \ -> ! \> \- \> underscore \ \
\verb!\%! \> \% \> percent
\end{tabbing)

\end{minipage)
\endCcenter)

The tabular environment creates tables that
are essentially boxes, that behave like figures and
can float around the page but cannot span pages.
Frequently these tables are enclosed in drawn rect-
angles containing vertical and horizontal lines to
separate the columns. The tab stops are handled
automatically and specified by 8, the position of the
items in the column is defined within the tabular
environment by one of the characters 1 r c to re-
spectively align on the left. on the right or center
the item, and the line is ended by \\.

A vertical line is drawn with I declared in the
tabular specification; the command \h l ine after \ \
draws a horizontal line across the full width of the

TUGboat, Volume 13 (1992), No. 2

table. The command \clineti - j) draws a hori-
zontal line across columns i through j , inclusive.

When an argument spans multiple columns, it
is produced by the \multicolumn command with
the following syntax:

\mult icolumn{n){pos)Citem)
where n is the number of columns to be spanned,
pos defines the position: 1 (for left), r (for right), c
(for centre), and item is the text to be typeset.

As an example consider the following table:

Cray Total Gain (millisec)
Level Time Gain CDC/Cray

29.86 10.5 1.52

that was produced by the following code:

\beginCcenterl
\beginCtabular){lclcIclclcl} \hline
\multicolumnC43iIclHCray . . . I \ \ \hline
Level & Time & Gain & CDC/Cray \ \ \hline
0 & 33.37 & -- & 1.36 \ \ \hline
1 & 29.86 & 10.5 & 1.52 \\ \hline
2 & 24.19 & 19.0 & 1.87 \ \ \hline
3 & 21.92 & 9.4 & 2.07 \ \ \hline
\end(t abular}
\end(cent er)

TO get an idea of the easy tabular environment
provided by I4m, note that the code used
to produce the same table is made of 22 lines, each
longer and more complex.

7 Mathematics

Mathematical formulas can appear as in-text ele-
ments (math environment) or as displayed formulas
(displaymath environment). Numbered displayed
formulas are produced in the equation environ-
ment. The commands to select the environments
are:

in-text maths: $. . . $ or \ (. . . \) or
\begin(math) . . . \endCmath}

displayed maths: \ C . . . \I or
\begin(displaymath) . . . \endidisplaymath)

equation: \beginCequation) . . . \endCequation)

Most math elements and symbols are made as
in TEX. The unchanged items are: subscripts and
superscripts, greek and calligraphic letters, math
spacing, symbols, ellipsis, etc. Most math com-
mands are identical to m, such as \overline and
\underline, \vec, etc. The same applies to font
selection for math, text and scripts.

Fractions are handled in an easy way by the
\frac command that has two arguments: numera-
tor and denominator.

Y + Z x=-
y2 + z2

\ [X = \fracCy+zHy"C2)+~^~2}} \ I
a + b

\ [\f rac{a+bHl+\f rac{a}{aa2+ba2)}\1
Arrays are produced with the array environ-

ment, which is similar to the tabular one. The dec-
laration specifies the size (number of columns) and
the alignment of items: 1 r c for left, right or cen-
ter. New items are begun with &, rows are ended
with \ \

x - 1 1
A = (0 x - 1 1

0 0 2 - 1 I')
The above array is typeset with the following

commands. Note that array syntax in LAW is very
similar to TEX.

The delimiters for arrays are typeset in the
same way as W: the commands \left or \right
to specify the left or right delimiter followed by the
delimiter itself 0 [I I {). The \left and \right
commands must come in matching pairs, but the
delimiters do not need to match in any form.

Long or multiple formulas are displayed with
the eqnarray environment, that enables line num-
bering and equation splitting. Rows are sepa-
rated by \\, items by &; numbering is disabled by
\nonumber. The following example shows the use of
eqnarray.

When symbols must be typeset one above an-
other, use the command \stackrel:

212 TUGboat, Volume 13 (1992), No. 2

Theorems can receive a name, a label and a
number when defined by the \newtheorem command
that takes two arguments: the name and the label.
The theorem text is emphasized. The numbering is
automatic and can be computed within the specified
sectional unit using the optional argument. The sec-
tional unit can be one predefined by such as
chapter, section, etc., or the name of a user de-
fined theorem, so that all theorems of the same type
are numbered in the same sequence.

\newtheoremCguess)CConj ecture} [sect ion]
% define conjecture in section
. . . .

\beghiguess) This is a guess. \endiguess)

Conjecture 7.1 This is a guess.

8 Definitions

IN$$ provides tools to define new commands
(m macros). The new commands are defined by
\newcommand. followed by the name, the optional
arguments and finally the definition. The name
must be prefixed by \; when used, arguments must
be enclosed in braces. In the following example is
shown I4m syntax to define and call the macro
\abx and the typeset formula thus generated.
\newcommandi\abx) [21 C$#Ix+#2$) \abxC5alCb)
5ax + b

In a similar way, to change style, fonts, empha-
sis. etc., the user can define a new environment with
\newenvironment.

Commands can be defined anywhere, but the
definitions must appear before their use.

9 Graphics - Floating Objects

I4m has a limited capacity for creating graphic ob-
jects and is able to move figures around in a floating
way to avoid splitting between pages. Figures can
receive a caption; in this case a caption number is
produced (for an example see Figure 1). Suppose
that you must insert a figure 5cm tall in your text;
the I4m code is:

\beginif igure)
\vspaceC5cm) % leave space for figure
\caption{Fractal image.)

\endCfigure}

In the above example we leave blank space to
insert the picture at a later time with cut and paste
methods. For simple graphics is able to draw
axes, lines, circles. The coordinate system is ex-
pressed in \unitlength with default value 1 point
(nearly 1/72 inch).

Origin
Figure 1: Graphic example

A picture is created with the picture environ-
ment by specifying the picture's x - y dimensions
and, optionally, origin, enclosed in parentheses:

\begin{picture~(200,150)(20,10)

Any graphic and/or text information is positioned
in the picture with the \put command. which is
followed by the coordinates in parentheses and by
the object to put in braces: \put (0, -10) {Origin).
Objects are ordinary text, straight lines, arrows, cir-
cles, ovals.

The line and arrow syntax is the same; the
commands are \line and \vector. The com-
mand arguments are slope expressed as (Ax, Ay)
and length. For \circle the argument is the di-
ameter. For \oval the arguments are width and
height plus an optional argument to draw only half
or a quarter of the complete oval. Lines can have
two standard thicknesses: \thinlines (default) and
\thicklines. Both declarations are used in the ex-
ample.

The source code example for a simple drawing
follows. I4W output is shown in Figure 1. Note
that IPm requires the use of parentheses 0 when
describing graphic objects.

\beginif igure)
\begin(picture)(200,150)

\put (0, -10) {Origin)
\put(5,5)i\vector(l,O)C180)3 % x-axis
\put (5,5)C\vector(O, l)il4Ol) % y-axis
\thicklines
\put(20,20){\line(1,2){60)} %draw line
\thinlines
\put (lOO,9O) {\circle{40)) %draw circle
\put(lOO,90)(\circle*{5)} %fill center

\endipicture)
\captionCGraphic example)\labelifig:ex>

\endif igure}

TUGboat, Volume 13 (1992), No. 2 213

Using the same basic criteria, virtual boxes can
be created to split the physical page into subareas
called boxes. Text can be placed inside the boxes
at center (default), left (1) or right (r). There are
two commands to handle such boxes: \makebox and
\framebox; the second one draws a frame around
the box. Both commands have the same syntax: two
optional arguments for width and position, and the
text to be framed: \framebox[wzdth] [posl{text).
Both commands can define box size and text posi-
tion as optional arguments. The text to be typeset
is enclosed in braces. The syntax and typeset results
are shown in the following example:
I framebox I \f ramebox [2cm] (f ramebox)

[framebox / \f ramebox [2cm] [l] {f ramebox}
Besides the above commands, the minipage en-

vironment enables the user to split the typeset in-
formation into variable size paragraphs of specified
width and position typed as multicolumns side by
side inside the current environment. The minipage
environment is used in the above example with the
following commands, in which boxes are created in
a nested way. The first minipage is 2.5cm wide and
the second one is wider (4.0cm). Both minipages are
typeset with the top line at the current text position
(Kt]). Note that the two minipage environments
are typeset side by side as normal text with a \quad
horizontal space.

\noindent
\begin{minipage) [t] C2.5cmI
\f ramebox [2cm] {f ramebox)
\f ramebox [Zcml [l] {f ramebox)

\end{minipage)
\quad % a l ign second minipage
\begin{minipage) [t] C4.0cm)
\verb ! \f ramebox [2cm] i f ramebox) !
\verb ! \f ramebox [2cm] [I] {f ramebox) !
\end{minipage)

Text can be positioned in the center, left or
right of the page using the center , f l u s h l e f t or
f l ushr igh t environments. To start new lines in
such environments use \ \ as in tabular and array
structures.

10 Reference - Index - Bibliography

UT)jX provides an easy way to create cross-
references linking the various elements of the doc-
ument, such as figures, equations, sections. Each
element can receive a name through the \ l abe l
command. Any string can be assigned to the
name, suggested naming conventions are eq: eu ler ,
sec t : syntax and the like to create mnemonic

names related to structures and thus more easily
identifiable.

Once an element is named, it is referenced with
the \ ref command. The name can be defined in any
place in the source code (before or after being ref-
erenced), but it should be typed immediately after
the referenced item, i.e. if the user wants to label
a caption to refer it by figure number. the l abe l
statement must be typed after the caption title:
\caption{Graphic example)\label{fig:ex).

IPm writes temporary files to handle refer-
ences that are resolved on the next run, thus it must
be run twice to typeset the updated reference infor-
mation. If the temporary files are missing or pos-
sibly not up to date, a warning message is written.
As an example consider the following fragment:

Equation 3 is very famous.
. . .
Energy equation is

E = me2
produced by:
Equation \ref{eq:ck) i s very famous.
Energy equation is \begin{equation)
E = mc-2 \label{eq:ck) \end{equation)

References can be set also on any page us-
ing \ l abe l to name the text and the command
\pageref to get the page number of the named text.
the source code looks like the following:
see page"\pageref{fonts) f o r more d e t a i l s .

Predefined \ label{fonts) fon ts a re :
Keep label definitions to a reasonably short size

to avoid problems with internal space. Avoid
defining labels that are never used or used too sel-
dom. Keep a list of used labels and their meanings
to produce a readable and mantainable input file.
More than forty labels can cause problems.

Finally, IPm can produce a table of contents
and bibliographic reference with auto-labels. The
style of this information is, as always, related to the
document style. Its position inside the document is
determined by the place in the input file: at the be-
ginning if the command is typed before \maket i t le,
at the end if it is typed before \end{document).

The table of contents is produced by the com-
mand \ tableof cont ents; other index information
can be produced for tables and pictures using
\ l i s t o f f i gu res and \ l i s t o f t ab les .

To produce a bibliography, the user defines en-
tries in the thebibiography structure, which can
have as optional argument the definition of the
widest label in the item list. Each item is inserted
with \ b i b i t em, which has the following arguments:

TUGboat, Volume 13 (1992), No. 2

an optional label that overides the default number-
ing scheme, the key-name for citations and the entry
text. The items are referenced with the \cite cbm-
mand.

An example of bibliographic data is given by
the following environment definition:

\begin{thebibliography)
\bibitem(bib:la) L. Lamport. \LaTeX:

{\em User's Guide and Reference . . .)
. . . .

\bibitem<bib-my)M. L. Luvisetto, . . .
(\em Introduzione . . . 3
\endithebibliography)

and are called in any place as shown:

. . . for more information see
\cite(bib:la,bib:le) and . . .
\cite{bib-my).

11 Useful Tools

At our site, many researchers have a workstation,
but a language sensitive editor is provided only on
some machines. To help our users in typing doc-
uments we have created a set of files containing a
template of the most common environments. The
files are defined at system level: as logicals under
VMS, as symbolic links under Unix, so they can be
inserted into a document during the editing session.

As most users are not computer professionals,
their knowledge of the editors is a basic one. There-
fore we have developed the utility program P r e I P m
that, when run on a new file, interactively asks for
title, authors, etc., and produces a template file sim-
ilar to the one listed at the beginning of this article.
The program asks also for section names and bibli-
ography; thus the user can create a skeleton of the
document a t his first session.

During the editing session, I P m environments
such as:

quotation itemize enumerate
description tabbing tabular
array minipage figure

can be inserted in template form by inserting one of
the template files.

The file contains the name of the environment,
the optional arguments, a title to declare its usage
and empty lines to produce the wanted information.
By following the template it is easy to create tables,
arrays, item lists, etc., even for newcomers. In a
few hours, inexperienced users are able to produce
simple documents. The file names and usage are de-
scribed in help files. For people using workstations,
it is simple to keep this information in a separate
window ready for use.

An example of a template file is given below for
the tabbing environment.

\begin{t abbing)
% create table, set tab with \=
% recall tab with \> end with \ \
% set template fields (f
% insert fields between tabs
% f l \= f 2 \= f 3 \= f 4 \= \kill

\> \> \> \> \\
\> \> \> \> \ \

.
\end(t abbing}

Thus the user needs only to fill in the columns with
his own values.

P r e I P m can be run on an existing file. In this
case, it produces a list of all sections together with
their headings, a list of all ref, pageref and label
commands and, at the user's request, a list of all
figures, captions, equations and the like. If the bib-
liography data are present they are listed at the end,
together with cite commands. This feature is found
very helpful in checking cross-references, especially
in the final steps of the document preparation.

P r e B W is not static. Planned extensions in-
clude a reformatting option that would change the
columnar alignment in the source of tables, arrays,
etc., to more closely resemble the output. A source
in this form should be easier to read and maintain.

The above software is free and available from
the authors, who can be contacted at the cited e-
mail address.

o Maria Luisa Luvisetto and Enzo
Ugolini

Istituto Nazionale di Fisica
Nucleare

Viale Ercolani 8
40138, Bologna, Italy
Internet: LuvisettoQCNAF. INFN. IT
Internet: UgoliniQCNAF . INFN. IT

TUGboat, Volume 13 (1992), No. 2

Geometr ic diagrams in IKQX
Peter J. Cameron

1 Introduct ion

Teachers of geometry since Euclid have known the
value of diagrams to help students in following ge-
ometric arguments. Paradoxically, it is necessary
that the argument be capable of standing alone,
without the diagram-Euclid himself realised the
possibility of reaching false conclusions from rea-
soning depending on a faulty diagram-but an
accurately-drawn diagram can be a valuable aid to
following the reasoning.

IPW provides tools (in the picture environ-
ment) for drawing accurate and clear diagrams,
which are a great improvement on what I can pro-
duce by hand. How adequate are these tools for
complicated diagrams?

An important feature of diagrams for pedagog-
ical purposes is that they should be generic. For
example, no two lines should be parallel, and no
triangle isosceles, unless this is part of the specifi-
cation of the diagram or a geometric consequence
of it. Such unwanted special features could create
the misleading impression that they are necessary
for the conclusion.

Of course, more powerful (and cumbersome)
picture-drawing tools are available; but IPW has
the advantage that it is always there. Also, as we
will see, the investigation throws up some interesting
problems!

2 Triangles

The picture environment enables line segments
with any one of 48 different slopes to be drawn. The
allowable slopes are 0 (horizontal), cc (vertical), any
ratio xly where x and y lie between 1 and 6 inclu-
sive, and the negatives of these.

Three different slopes determine uniquely the
shape of a triangle. We are still free to determine
the size and position of the triangle by positioning
the line segments appropriately.

It is easy to draw an isosceles triangle in which
the base is horizontal or vertical (the other two
slopes a, b should satisfy b = -a) or makes an angle
of 45" with the axes (the other slopes satisfy ab = 1).
Curiously, i t turns out that any other isosceles tri-
angle which can be drawn is right-angled (with base
angles of 45"). There appears to be no logical rea-
son for this fact, which is established by checking
all possibilities. A typical example has slopes of 115
(for the base), -213 and 312. Up to reflection in the
axes, there are twelve such triangles.

Note in passing that it is not possible to draw
an equilateral triangle accurately in IPW. for all
allowable slopes are rational numbers, and so the
tangents of the angles between them are also ratio-
nal; but

tan60° = h
is irrational. Tolerable approximations can be pro-
duced; for example, 513 differs from & by only
about 4%.

On the other hand, rectangles and squares can
be drawn in many different orientations, since lines
with slopes a and - l /a are necessarily perpendicu-
lar. The interested reader may like to consider other
metric properties of quadrilaterals and higher poly-
gons.

3 Quadrangles

The last section was about Euclidean geometry, con-
cerning actual values of lengths and angles. (In prac-
tice this means that properties will be destroyed if
the horizontal and vertical resolution of the output
device are not equal; for example, isosceles triangles
will no longer be isosceles). In what follows, I will
be concerned with afine geometry, which does not
have this defect. Only incidence and parallelism,
and properties derived from these are significant.
For example, we can say that two line-segments have
the same direction; if they have the same direction
(but not otherwise), it is meaningful to say that they
have the same length.

The first problem that arises is to draw a com-
plete quadrangle, consisting of four points and all six
lines joining them. Here, the slopes of the lines de-
termine the figure up to choice of position and scale;
but the six slopes are not independent. If they are
a, b, c, dl e, f , where the pairs a and b, c and d, e and
f are "opposite", and a, b and c pass through one of
the points, then

(b - c)(d - e)(f - a) = (a - d) (b - e)(c - f) .

Using this formula, f can be expressed in terms of
the other five slopes. Of course, not all choices of
a, . . . , e will give an allowable value for f. Deter-
mining the allowable possibilities is clearly work for
computers!

A note on this computation. It is an advantage
to do all the calculations in integers. If the non-zero
B ' slopes are multiplied by 60, they become in-
tegers, and can be recognized by the fact that they
are all the divisors of 3600 between 10 and 360 in-
clusive, except for 16, 18, 25, 144, 200, 225 and their
negatives. Moreover, since our equation is homoge-
neous, it remains true after this multiplication. The

TUGboat, Volume 13 (1992), No. 2

Figure 1: Desargues' Theorem.
Figure 2: Pappus' theorem.

good news to emerge from the computation is that
there are far too many solutions to list here!

4 Desargues and Pappus

Two very important theorems of affine geometry are
those of Desargues and Pappus. Each has the prop-
erty that it is cumbersome and unenlightening to
state in words, but simply expressed by a diagram.
Desargues' theorem states that if we have the ten
points and nine of the ten lines of Figure 1, then the
tenth line also occurs (that is, the three correspond-
ing points are collinear). Pappus' theorem has a
similar diagram with nine points and nine lines (see
below).

If we look at the Desargues configuration. we
see five complete quadrangles in it. So the work
done in the last section can form the basis of a com-
puter search for suitable parameters: seven slopes
will determine the shape of the figure. Before I made
this search, I spent some time looking for solutions
by trial and error. without success. The surprising
result of the exhaustive search was that there are
many tens of thousands of solutions. The particular
one used t o draw Figure 1 is as follows. It is chosen
to be reasonably .'genericn, in the earlier sense.

\setlength(\unitlength3{0. 3mm)
\begin(picture1(220,130) (-10,-40)
\put(O,O>i\line(l,0~~20733
\put (0 ,O) C\line(3, i>(15311
\put (0 ,O> i\line(4, -1) (i32))
\put (92, -23) (\line (2,3) (68))
\put (92, -23)C\line(5, i)Cii533
\put (i32, -33) (\line (5,3) (55))
\put (132, -33) (\line(i ,4)C28>3
\put (177, -6)C\line(-i ,51ii733
\put (i87,O) (\line(-2,3) C3413
\put (207,O) (\line (-3,2) (693)
\endipicture)

Pappus' theorem is illustrated in Figure 2.
Unlike the last one, this figure contains no com-

plete quadrangles, so we have to start its analysis
from scratch.

There is an added difficulty. The equation con-
necting the slopes of a complete quadrangle has de-
gree 3; so individual terms cannot exceed 3603 =
46656000; using 32-bit integers, there is no risk of
overflow. However, in the case of Pappus, we have a
fifth-degree equation (even after assuming that one
line is horizontal), and integer overflow is inevitable.
This can be alleviated to some extent by dividing by
common factors wherever possible; but there were
still many cases when the terms grew too large. So I
abandoned the exhaustive search and simply looked
for what I could find.

The general picture was the same as for Desar-
gues: there are thousands of acceptable solutions,
but it is very difficult to find even one by trial and
error.

5 Conclusion

I P ' provides tools for drawing quite complicated
diagrams. But there are some things that can't be
done, and others where you have to work quite hard
(and even resort to computation) to find the right
way to draw your figure. Readers are encouraged to
try their luck with other geometric configurations.
(I have concentrated on some of the figures I had to
draw for a volume of lecture notes on geometry.)

Perhaps someone will be inspired to write a pro-
gram which does all this automatically. The input
should be the specification of the diagram, with op-
tionally some comments about desirable or undesir-
able coincidences of length or slope. The program
should either produce I4W input for an acceptable
figure, or tell the operator that it can't be done.

o Peter J. Cameron
School of Mathematical Sciences
Queen Mary and Westfield College
Mile End Road
London El 4NS
U.K.
Janet: p j cQuk. ac. qmw .maths

TUGboat, Volume 13 (1992), No. 2

How to change the layout with IPW 2.09

Hubert Part1

The IPW principle

Everything that is printed consists of two compo-
nents: content and layout. The author provides
the contents, the publisher's layout designer pro-
vides the layout, the typesetter puts the contents
into the desired layout, and the printer puts it onto
the paper.

These steps are clearly separated by U r n :

The author specifies the contents in the docu-

4. Specify the name of the original document style
as the argument (i.e. between the curly braces)
in the \documentstyle command, and add the
name of your new document-style option as the
last option between the square brackets.

Since U r n reads first the main document
style and then the document-style options, your
modified definitions will override the original
ones.

Thus, the problem is reduced to the question:
where do I find the original layout definitions and
an explanation of how to modify them?

ment, i.e. in the . t ex file. Where to find the original definitions
The layout designer specifies the layout in the Since Leslie Lamport's U r n manual is aimed at au-
document sty1e, i.e. in One Or sty thors, not at layout designers, the required inforrna-
@m typesets the contents (i.e. every- tion is distributed over several places. I recommend
thing between \beginCdocument) and the following search order:
\endidocument>, using the layout that re- the Uw manual,
sults from the main document style and
the document-style options specified in the 2. the files a r t i c l e .doc, ar t10 .doc, etc., which

\document s t y l e command. contain the definitions from the corresponding
. s t y files, but with explanations added on com-

The device driver prints the results. ment lines.
Four main styles (a r t i c l e , repor t , book, 3. the file l a t e x . tex.

l e t t e r) and several options (twoside, twocolumn,
etc.) are distributed together with UT#, and many
more are available in the style collections that can
be found on various servers (Aston, Heidelberg,
Stuttgart, SHSU and so on).

Now, let us assume that you are an author who
wants to print something in a certain layout.' If
you find a document style or document-style option
that produces just this layout, all you need to do
is copying that file to your computer and naming it
in the \documentstyle command. If no such style
exists yet, just write your own, and don't be afraid:
it's not so complicated as you may think.

How to proceed

For most cases, I recommend the following way:

1. Find a n original IPT)jX style file that produces
a layout which has some similarities with your
required layout, and note all the differences be-
tween that original layout and your required
layout.

2. Find the original definitions of all the features
that have to be changed.

3. Write a document-style option that contains the
modified versions of these definitions.

Of course, this layout has to be specified by
a professional designer - either hire such a profes-
sional to design it for you, or follow a professionally
designed layout that you have seen somewhere and
that suits your needs.. .

4. Donald Knuth's rn book.

For the new version 3.0 of I 4 w , Frank Mittelbach
und Rainer Schopf have promised to provide a sep-
arate and complete documentation of the style de-
signer interface.

The following hints and examples refer to the
current U r n version 2.09.

An example

Let's look at a simple example: in an article that
contains several sections with a large number of
mathematical equations, the equations must be
numbered separately in each section rather than
consecutively throughout the article.

In the UT# manual, we learn that in the
report document style something similar is pro-
vided: there, equations are numbered separately in
each chapter.

In the file repor t . doc we find the following def-
init ions:

\QaddtoresetCequation>Cchapter)
\def\theequation{\thechapter

. \arabicCequation))

The first line resets the equation counter at each
chapter, and the second one defines the equation
label to consist of the chapter counter, a full stop
and the equation counter.

Therefore, we write the following new defini-
tions to a file that we call eqpersec. s t y :

\@addtoreset~equation){section)

218 TUGboat, Volume 13 (1992), No. 2

Of course, the file must contain more than just these
two lines: we need comment lines that state the
name of the file, its author, the version (date of last
change), an explanation of its purpose and usage,
and explanations of the definitions. Also, we prop-
erly end it with \endinput. Figure 1 shows the
complete file.

With this file being available, we can change
the equation numbering scheme by specifying the
new style option name eqpersec in

Now that we have mastered this exercise, let us
have a look at some other typical layout problems.

Page dimensions

Changes to the page grid are rather simple: they
can be achieved by setting the appropriate length
parameters.

From the I 4 ' ' manual, we learn the following:
vertically, each page consists of the following parts
(from top to bottom)

1 inch plus \topmargin white space on top,
\headheight space for the running head,

spacing, and hyphenation must be disabled within
the headings.

In the file art 10. doc we find the following def-
inition:

\def\sectionC\@startsection
Csection)CI)C\z@)%
C-3.5ex plus -1ex minus -.2ex)%
C2.3ex plus .2ex)%
I\Large\bf 1)

and similar definitions for subsections etc. The ab-
solute values of the fourth and fifth parameters spec-
ify the spacing before and after the heading, and the
sixth parameter specifies its style. Therefore, we ar-
rive at the following modified definition:

\def\sectionC\C!startsection
{section)Cl)C\z@)%
{-1.75ex plus -0.5ex minus -.lex)%
(1.15ex plus .iex)%
C\secshape\large\bf 1)

(and similar ones for subsections etc.), with an extra
definition

\def\secshape(\rightskip=Opt plus lfil
\hyphenpenalty=2000\relax)

which sets the text ragged right without hyphenat-
inn' 'Iy, '

\headsep white space below the running head,
\textheight space for the main text (including Running headers and footem
figures, tables and footnotes), From our sources we learn that running head-
\f ootskip space for the running foot (including ers and footers are specified by page styles, and
the white space above it), that page styles are defined by commands of the
and the rest of the paper height for the white form \ps@name, which can then be selected by the
space a t the bottom. \pagestyle command.

Horizontally, normal pages2 consist of the fol-
lowing parts (from left to right):

1 inch plus \oddsidemargin (for odd-numbered
pages, or \evensidemargin for even-numbered
pages) white space on the left,
\textwidth space for the main text (includ-
ing indentations), which may be split into two
columns separated by \columnsep,

0 \marginparsep white space between text and
marginal notes,
\marginparwidth space for marginal notes,
and the rest of the paper width for the white
space on the right.

Section headings

Let us assume that we want to change the section
headings in two respects: they must be less promi-
nent, i.e. use a smaller typeface and smaller vertical

i.e. pages where marginal notes are to appear
in the right margin.

Now we want to define a new page style
myf ootings that produces a running footer similar
to the running header of the myheadings page style,
but-to make matters even more complicated-
with a horizontal line above.

In file article . doc, we find the following defi-
nition for the myheadings pagestyle:

\def\ps~myheadings~\let\@mkboth\@gobbletwo
\def\C!oddhead{\hboxi)\sl\rightmark \hfil

\rm\thepage)%
\def\@oddfootC)%
\def\@evenheadi\rm \thepage \hfil

\sl\leftmark\hbox {I)%
\def\@evenfootCl%
\def\sectionmark##lC)
\def\subsectionmark##lC))

The definitions of \@oddhead, \@oddf o o t ,
\@evenhead and \@evenf oot specify the running
headers and footers of odd and even numbered
pages, respectively, either as a line or as a \parbox of
width \t extwidth. Within these lines, \rightmark

TUGboat, Volume 13 (1992), No. 2 219

and \leftmark are variable texts that can be in- If we want all these skips to equal \parskip,4
serted with the \markboth and \markright com- then we have to set \parsep to \parskip, and both
mands, and \thepage is the page number. We \topsep and \itemsep to zero. However, it is not
define sufficient to set these values globally. Rather, the
\def \ p s b y f o o t ~ n g s ~ \ ~ e t ~ ~ ~ ~ o t ~ \ ~ g o ~ ~ ~ e t o initialization macros for the list at the various nest-

\def\Qoddfoot{\parbox~\textwidth)% ing levels have to be redefined. Figure 2 shows what
i\ruleC\textwidth)CO.4pt)\\C2ptl has to be added to our paragraph shape definitions.

\mbox~~\small\sl\rightmark \hf ill
\small\sl Seite'\thepage))%

\def\@oddheadC)%
\def\Qevenfoot{\parbox~\textwidth)%

{\rulei\textwidth){O . 4pt)\\ [2ptl
\small\sl Seite-\thepage \hf ill
\leftmark \mbox{)))%

\def\Qevenhead{)%
\def \sectionmark##l()
\def\subsectionmark##l{}>

and put this definition into a file myf oot . sty. To
switch on this page style, we have to specify the
document-style option myfoot, to specify the page
style myf ootings and to fill in the variable texts:

\documentstyle [llpt ,myf oot] Carticle)
\pagestyleimyfootings)
\markboth{News of \today){News of \today)

Paragraphs

Let us assume that we want paragraphs to be sep-
arated by a certain amount of vertical space and
without horizontal indentation (although some peo-
ple consider this a bad practice).

The obvious way is to set \parskip and
\parindent accordingly. In order to help I4m
to find the best places for page breaks, we give
\parskip a non-zero stretch component. Thus we
arrive at the following:

\parskip=O,5\baselineskip
\advance\parskip by Opt plus 2pt
\parindent=Opt

However, this has some undesired side effect^:^
the vertical spacing before, after and within lists
and other environments depends on the value of
\parskip, too. From the IPm manual we learn
the following spacing conventions for list-like envi-
ronments:

\parskip plus \topsep before the first item of
a list (before the environment),
\parskip plus \itemsep between items, and

a \parsep only between paragraphs within one
item.

at least in the current I4W version 2.09.

Where to find more information

For all who want to know more about "How to
change the layout with I4W 2.09", I have written a
booklet of about 30 pages-in German. It is avail-
able freely. The I4m source files (including their
own special document-style options) can be obtained
via Bitnet from the server 1istservQdhdurzl in
Heidelberg-GET the file LAYOUT ZOOWE and de-
code and unpack it to obtain the files layout. tex,
layout:!. tex, refman. sty and german. sty. Mem-
bers of the German-speaking m users group can
also obtain it on a PC diskette from the DANTE
association in Heidelberg.

At the European Conference 1990 in
Cork,5 Frank Mittelbach and Rainer Schijpf an-
nounced that version 3.0 of I4W will contain
several significant changes (improvements) to the
document-style design interface of I4m, and that
they will provide a complete documentation of this
interface in addition to the traditional I4W user's
manual. The completion of the I4m 3.0 project
will be announced via TUGboat in due time.

Acknowledgements

I want to take this opportunity to thank Sue Brooks,
Paul Stiff, David Rhead, and Nelson Beebe, who
were very helpful with guiding my first steps into
the miraculous land of I4" layouts.

o Hubert Part1
EDV-Zentrum
Universitat fiir Bodenkultur
Feistmantel-Strafle 4
A-1180 Wien, Austria
Bitnet: z3000paQawituw01

which, however, leaves no visual distinction be-
tween lists within paragraphs from lists at the be-
ginning or end of a paragraph.

see TUGboat 12, no. 1 (1991), pp. 74-79.
Editor's note: An update on the I4m 3.0 project
appeared in TUGboat 13, no. 1 (1992), pp. 96-101.

TUGboat, Volume 13 (1992), No. 2

Figure 1: Example of a complete style option file

% This is EQPERSEC.STY by H.Part1, TU Wien (Austria)
% Last change: 7 Feb 1990
% Document-style option for LaTeX 2.09,
% to make equations numbered per section,
% to be used only with the document style 'article'.

% Reset equation counter at each section:
\Qaddtoreset{equation){section)

% Equation label = section number dot eqation number:
\def \theequationi\thesection . \arabic{equation))

Figure 2: Modifications for the list environments

TUGboat, Volume 13 (1992), No. 2

SGML - Questions and Answers

Reinhard Wonneberger and Frank Mittelbach

Abstract

This paper explains SGML fundamentals in a concise
Questions & Answers way.

More detailed information can be found in the works
that are listed in the bibliography.

Abbreviations and acronyms are explained in a glos-
sary.

Usage of proprietary names in this paper must not
be construed to mean that they are free of rights.

1 Functionality

rn W h a t does SGML m e a n ?
SGML stands for Standard Generalized Markup Lan-
guage. It is the most important standard for docu-
ment processing [App89].

rn W h a t is General Markup?
General Markup is a special sort of text that will
tell a reader or a program about the the logical
function of ordinary text. In the I4m sequence
\section(Headline), the markup \sect ion states
that the text Headline is to be considered as a sec-
tion heading. General Markup is described in more
detail in [CRD87].

How can SGML be converted in to pr int?
The proper way is to use a parsing and translating
program, which will check that the document cor-
responds t o the Document Type Definition (DTD)
and then will translate the document into one of the
available document processing languages, e.g. DCF-
GML, m, TROFF, or some other system, or into
internal code with systems like Interleaf.

There are also some programs that can inter-
pret a subset of SGML-conformant markup, due to
the fact that they allow implementation of Gen-
eral M a r k u p , see below, This is especially true for
DCF and TJ?J [Wonng]. Interpreting SGML, how-
ever, does not allow checking for conformance with
a DTD.
-

W h a t is the diflerence between GML and
SGML ?

SGML Markup will normally be parsed by an inde-
pendent program to assure conformance with the

Document Type Definition (DTD) and then con-
verted to some processing language, like DCF-GML
or U r n .

GML Markup is one of the processing lan-
guages, and is tied to DCF, a proprietary program
of IBM.

W h a t other use can be made of SGML?
One main application area is databases. SGML
markup can be mapped to database fields and vice
versa, and specific information can be extracted
from SGML-tagged sources automatically. Another
application is hypertext [Det 911.

2 Usage

W h o are the key users of SGML?
Many producers of large quantities of documents,
among them the US Department of Defense (DoD)
and many other government authorities in several
countries, the European Community, several re-
search institutions, etc.

18 SGML ~ r o p i e t a r y ?
SGML is a Standard, that has been adopted by Stan-
dards committees on different levels, and as such it
is non-proprietary. The software to process SGML
may or may not be proprietary, depending on the
software supplier.

I s there a business impact of SGML?
Definitely yes, as SGML has been made an integral
part of CALS, which is a bundle of requirements for
submitting bids to the already mentioned DoD in
electronic form. Due to the influence of the DoD,
many vendors are obliged to meet these require-
ments, and other institutions will follow suit in im-
posing this standard.

C a n SGML documents be exchanged across
computer platforms?

Yes, if you have true SGML software. Some pro-
grams up to now, however, support only a special
predefined set of DTDs.

I s SGML h u m a n readable?
That is one of its main advantages over the so-called
WYSIWYG systems. You might even read a com-
plete SGML source on the phone!

Does SGML r u n on m y sys tem?
As SGML-tagged documents do not contain hidden
characters, you can generate and edit them on any
computer system. SGML parsers for many computer

222 TUGboat, Volume 13 (1992), No. 2

platforms are already available or under develop-
ment. See also section 4 for some information on
available software.

How do I enter an SGML document?
By using your favourite text editor, e.g. ISPF for
MVS systems. There are also editors that help you
with entering correct SGML syntax (that's the lux-
ury class).

Where can I get more information o n SGML?
Just refer to the following books [Go190, Her90,
Bry881 and articles [Bar891 or [Laagl, Popgl].

3 Applications

How can we benefit from SGML?
Our documents if tagged with SGML may have a
good chance to survive us, to say nothing of the
many benefits of the General Markup approach in
general [CRD87] as they are well-known from sys-
tems like DCF or U W . In addition, SGML gives in-
dependence of specific programming environments,
providing full portability of sources like and
U r n . Unlike W and U'QjX, however, SGML is a
true international standard, not only a de facto stan-
dard set by usage, and a standard that is backed by
powerful institutions. The fundamental advantages
of General Markup have been described so often that
we don't dare to repeat that here, cf. [WonSO].

Are applications confilled to document process-
ing?

No. Another important area of application is
databases. Because tags can specify the contents
of a field, they can also be used to load information
into a database. The other way round, information
from a database can be output with tags so that it
can be formatted automatically into a specific doc-
ument.

How could SGML interact with a database?
In some databases, there will be 'free-form texts'.
In order to get specific items from such fields for
reporting, one might use SGML tagging inside free-
form text fields, then write out the contents of these
fields to a file and process the file with an SGML
parser and typesetter. In addition, fields defined in
the database might be written out with generated
tags. Like this, the benefits of a database can be
combined with the benefits of Structured Document
Processing.

4 Products

How c a n SGML be used on a mainframe host?

If an MVS host is implied, there are several possibil-
ities we know about:

0 Use an SGML parser from IBM.
0 Emulate SGML with DCF, provided your input

obeys a few restrictions.
Use the DAPHNE software from DFN for trans-
lation into W, TROFF, or DCF [SC88].

0 Interpret SGML with TEX, which might be an
attractive solution; cf. [Won921 for details.

What about ~ ~ T k s t a t i o n ~ ?
A well-known product is Interleaf, which is also
available from IBM under the name TPS. Another
important product is the Publisher from ArborText.

Glossary

AAP American Association of Publishers.
Attribute Modifier of a Markup Tag, used to specify

different values.
CALS Computer-Aided Acquisition and Logistics

Support.
DCF Document Composition Facility (IBM prod-

uct), +GML.
DTD Document Type Definition.
General Markup Meta-information specifying the

logical function of ordinary text.
GML General Markup Language, part of +DCF.
IS0 International Organisation for Standardisation.
ISPF Interactive System Productivity Facility, a

user interface for +MVS.
Lamport's TEX, markup language and

+m macro package by Leslie Lamport.
MVS Multiple Virtual Storage, production-oriented

IBM operating system for large mainframes.
Parser Program performing syntax analysis on some

source.
SGML Standard Generalized Markup Language.
Tag Explicit label that marks start (and end) of a

source entity.
(from the Greek rLxuq) typesetting program

by Donald E. Knuth.
WYSIWYG 'What you see is what you get'; slogan

describing screen-oriented text processing tools,
often considered as the opposite approach to
+General Markup.

Bibliography

[App89] W[olfgang] Appelt. Normen im Bereich
der Dokumentverarbeitung. InfoTmatZk-Spekt~~Tn,
12:321-330, 1989.

[Bar891 David Barron. Why use SGML? Electronic Pub-
lishzng (EPodd), 2(1):3-24, April 1989.

TUGboat, Volume 13 (1992), No. 2

[Bry88] Martin Bryan. SGML: A n Author's Guide
to the Standard Generalized Markup Language.
Addison-Wesley, Woking, England; Reading, Mas-
sachusetts, second edition, 1988.

[CRD87] James H. Coombs, Allen H. Renear, and
Steve J. DeRose. Markup systems and the future of
scholarly text processing. ~ommun&at ions of the
ACM, 30(11):933-947, November 1987.

[Detgl] Christine Detig. & Hypertext - The fu-
ture of electronic publishing. In Guenther [Guegl],
pages 8-12. TUGboat 12 (March 1991) Number 1.

[Go1901 Charles Goldfarb. The SGML Handbook.
Clarendon Press, Oxford, 1990.

[Guegl] Mary Guenther, editor. m 9 0 Conference
Proceedings; University College; Cork, Ireland,
September 10-1 3, 1990, Providence, Rhode Island,
U.S.A., March 1991. rn Users Group. TUG-
boat 12 (March 1991) Number 1.

[Hergo] Eric van Herwijnen. Practical SGML. Kluwer,
Dordrecht, NL, 1990.

[Laagl] C.G. [Kees] van der Laan. SGML(, rn and
. . .). In Guenther [Guegl] , pages 90-104. TUG-
boat 12 (March 1991) Number 1.

[Pop911 N.A.F.M. Poppelier. SGML and in scien-
tific publishing. In Guenther [Guegl], pages 105-
109. TUGboat 12 (March 1991) Number 1.

[SC88] A. Scheller and C. Smith. DAPHNE; DOCU-
ment Application Processing in a Heterogeneous
Network Environment; Dezentrale Verarbeitung von
Dokumenten auf der Basis von SGML; Benutzer-
anleitung (Version 3.0). GMD-FOKUS, Berlin, im
Auftrag des Vereins zur Forderung eines deutschen
Forschungsnetzes e.V., April 1988.

[Won901 Reinhard Wonneberger. Structured document
processing: the I4m approach. In J. Nadrchal,
editor, Man-Machine Interface in the Scientific En-
vironment. Proceedings of the 8th European Sum-
mer School on Computing Techniques in Physics.
Skalsky Dvdr, Czecholsovakia, 19-28 September
1989, volume 61 of Computer Physics Communi-
cations, pages 177-189. North Holland Publishing
Company; Elsevier Science Publishers B.V., 1990.

[Won921 Reinhard Wonneberger. Approaching SGML
from w. TUGboat 13(3):223 (July 1992).

[Wonng] Reinhard Wonneberger. '7&X in an industrial
environment. In Anne Briiggemann-Klein, editor,
Proceedings of the 4th European QX Conference,
September 11 th-13th' 1989, Karlsruhe, forthcom-
ing.

o Reinhard Wonneberger and
Frank Mittelbach

EDS Electronic Data Systems
(Deutschland) GmbH

EisenstraBe 56 (N15)
D-6090 Riisselsheim
Federal Republic of Germany

Dreamboat

Editor 's note: This column heading hasn't ap-
peared for years, but it seemed an appropriate cor-
ner in which to collect ideas and suggestions related
to the topic "Where do we go from here?" In ad-
dition to the following articles, which were written
before the formal recognition of interest in future
directions, Philip Taylor has reported in this issue
(p. 138) on the first meeting of the working group
coordinating the discussion.

wish list

Michael Barr

It is the rare user of T@ who has not, at some time,
felt that m lacks some feature or other. Since
Knuth has announced that 7&X is now frozen, save
for an occasional bug fix, it is up to the m com-
munity to give thought to the kinds of features that
we want in any successor to m.

I do not expect that my wish list will be ex-
haustive or that the future program will implement
every one of my suggestions. I am merely trying to
start a dialog on the kind of program we want in the
future.

Let me say a few words about what I don't
want. I don't expect to see a WYSIWYG program,
although a multitasked previewer would be nice. I
don't expect to see a page layout program. In fact,
I don't want to think about page design at all. Ide-
ally, f u t u r e m will take care of all design details
itself. It is a tour de force to lay out T V Guide in
m, but Tf?-X is not the tool I would have chosen
for the job.

Here are some of the things that I have felt
lacking in m, in no particular order. I divide
them into two groups, depending on whether or not
they could be made compatible with current device
drivers. The reason is that there is basically only
one program, but as many device drivers, and
more, as there are devices. Thus the amount of work
that is involved in upgrading the latter is orders of
magnitude larger than that which is involved in up-
grading 'IJjX itself.

Features that could be implemented
without changing device drivers

A smart \put. By a smart \put , I mean a pro-
cedure similar to the \point defined on page 389

TUGboat. Volume 13 (1992), No. 2

of The w b o o k , but one that would set the width
of the box properly. If you actually try that proce-
dure, you will find that the box has zero width. The
height and depth are set to the actual height and
depth, but not the width. No variation I tried was
able to do it either.

The reason I consider it important is that I
use M ' ' s picture mode extensively for commu-
tative (and even non-commutative) diagrams, and
you have to tell picture mode exactly what dimen-
sions your picture is. What nonsense! TEX is smart
enough to figure out how large your picture is, isn't
it? Well, yes it is, but not at any great speed. I
don't know what design consideration caused Leslie
Lamport to implement \picture mode as he did,
but it is entirely possible that it was the long time
it took for a picture to work out its own size. If this
were implemented in the program, it would take a
fraction of the time. For my own macros, I have
reimplemented both \put and \picture. However
the compilation of a diagram of any complexity takes
a long time. A page with even one complicated dia-
gram takes an appreciable part of a minute (on my
16 Mh 386SX computer).

Implicit in this point is that there should be a
built-in picture mode. It would be faster and more
reliable than the IP!QX \picture procedure. By the
way, although it is not an important point, Lam-
port erred in having his coordinate system use the
mathematician's orientation. TEX is a typesetting
program and to a typesetter the positive y direction
is down, not up. I find it a real nuisance to think
upside down when drawing a complicated diagram.

More reliable program control. This rubric
covers so many different things that I hardly know
where to start. Take the entire appendix D of The
m b o o k and ask yourself why most of them should
require dirty tricks? Most of them are quite rea-
sonable things and it is a mystery to me why you
should have to resort to dirty tricks to do reason-
able things. Take the discussion of trying to place
\n stars on a page, where \n is an integer variable.
Why is this so hard to do? It is, after all, a perfectly
reasonable thing to want to do; why shouldn't the
language provide a way to do it straightforwardly?
I know that Knuth is exceedingly clever, much clev-
erer than I, but why didn't he design a language that
I could program in? The June 1991 issue of TUG-
boat had no fewer than three new implementations
of procedures for outputting \n asterisks, and each
of them was based on some clever trick.

I suspect that one of the problems is that Knuth
didn't at first think of TEX as a programming lan-

guage. This seems even clearer if you look at w 7 8 .
It was so deficient that you couldn't \advance a
numeric variable, only increment or decrement it.
Imagine how hard it would be to implement IP'QjX
in that language!

I am getting indigestion hearing about m ' s di-
gestive tract. The discussion of \expandafter is lu-
dicrous. Both \expandafter and \noexpand ought
to be able to take an entire brace-delimited phrase as
argument, not just a single control sequence. More-
over a new control sequence \expand ought to be
provided, preferably with a second, optional, pa-
rameter that tells how many levels of expansion are
wanted, since in many cases you want only one level
of expansion, not to the very bottom. More gener-
ally there ought to be a simple mechanism by which
the user can specify when a control sequence should
be expanded. For example, \expandafter is what
in FORTH would be called an immediate control se-
quence; it controls compilation. The user should
have the ability to define his own "immediate" con-
trol sequences as well as ways of overriding this spec-
ification (it is often necessary to override the imme-
diate specification when defining a new immediate
word).

Better arithmetic. This includes the ability to
use numeric expressions as arguments and having
real number registers. I have been told that the rea-
son for the lack of the latter is that Knuth didn't
want the user to have any access to the underlying
floating point. Why should l&X use floating point
arithmetic at all? Wouldn't everything be faster if
everything were in fixed point? I thought all dis-
tances were in scaled points anyway and a scaled
point is smaller than one wavelength of visible light.

As for using expressions as arguments, almost
anyone who has ever used a macro has had to write
complicated procedures because you couldn't give,
say, \hsize-lOpt or similar expressions involving
counters as arguments. At one time, this lacuna
was justified on the grounds that !QX was to run in
as small a memory as possible, but this is no longer
a valid reason.

Successive super and subscripts. This seems
like a picky point, but in my work it comes up sur-
prisingly often. I refer, in the first instance, to the
fact that you cannot say x-1-2 for x-C12). Why
not? They are logically equivalent. To see what
pain even Knuth had to go through on this point,
see the definition of the \prime operator. I have an
operator \op defined as €{)-Cop)) and the initial

TUGboat, Volume 13 (1992), No. 2 225

brace pair is there to avoid running into the "dou-
ble" superscript error. But it also means that it
doesn't work properly if there is a subscript on the
same symbol. Surely a simple parser could interpret
double superscripts properly.

More reliable global page procedures. I was
recently unable to get marks to work right in the
twocolumn environment of either the macros sup-
plied by IPW or those of Frank Mittelbach. Foot-
notes are not reliably placed by Mittelbach's style
either. I t is not clear if, in the present version of
m, it is possible to combine a multicolumn style
that allows changing the number of columns in the
middle of a page with proper placement of footnotes
and marks. I don't use inserts, but virtually every-
one who does complains that they don't work as ex-
pected. Changebars have proved extremely difficult
to implement reliably. Someone wrote to w h a x
several months ago asking if it was possible to leave
a 2 by 2 inch box blank in a lower corner of each
page. So far as I know, it can't be done, except per-
haps by some sort of cut and try procedure similar
to that of the column balancing on page 387 of The
Qjxbook.

More control over tfm's. The internal variables
pertaining to a whole font can be changed, but not,
as far as I am aware, those for single characters. I
have occasion to use fairly frequently the notations
do and d l . I do not know how these would look
in the family used to print TUGboat, but in the
cmmi font the first of these comes out with the top
of the d running into the 0. Since the 1 is thinner,
this doesn't happen. And of course, as it happens,
d is one of only three characters in the lowercase
Roman alphabet that have an ascender sticking out
that far t o the right (1 and f being the others). If
I understand rules 17 and 18 of page 445 of The
W b o o k correctly, an italic correction is added be-
tween a character and a superscript. But the italic
correction is set globally in a font and it seems clear
that a bit more is needed for those three letters when
they have a superscript.

A completely different example is provided by
my experience in making a minus sign with a dot
on it. Try as I might, I could not get the dot low
enough. Eventually, I asked m h a x and got an an-
swer from Barbara Beeton. For some reason Knuth
gave all the standard arithmetic operators the same
height as the largest, which is probably the plus.
The result is that a dot on the minus comes out at
the same height as it would on a plus and, of course,

looks awful. The definition I now uses \smash and
then gives the minus sign the (completely arbitrary.
as far as I am concerned) height of 0.55ex. My feel-
ing is that what Knuth did was an error in judgment.
but that is not my point here. If the user had control
over these things, then the height of the minus could
have been left at its natural height and defined as be-
ing the height of the plus any time that was needed.
The reason I think Knuth was in error is that you
can make a box containing the minus whose height
is that of the plus, but given that the tfm entry for
the minus gives it the height of the plus, there is no
way of getting its natural height back. You simply
have to guess a number like 0.55ex, which is bad for
a number of reasons. It might be wrong, it might
not be correct in a different sized font, depending on
how that size was selected and it might not be right
in a different family.

Features that require new device drivers

Diagonal rules. Traditional typesetting didn't
have anything like diagonal rules, but it would be
extremely helpful if ll$J went beyond traditional
typesetting here. To some extent, the IPW line
fonts compensate for this. but only partly and unsat-
isfactorily. First off, the number of different slopes
is severely limited. Only 26 slopes are allowed (in-
cluding horizontal and vertical) and arrowheads are
available at only 14 of them. This isn't so limit-
ing; what is more serious is the fact that the short-
est segment available at any oblique slope is much
too long. I have been trying to implement diagonal
dashed lines (and arrows), but the shortest segments
available are much too long and it will have to be
done with dots. This is inefficient both in time and
in memory.

Opaque boxes. It doesn't come up often, but ev-
ery once in a while I feel the need to be able to place
one box opaquely over another. I don't even know
if this is possible in either HP printer control lan-
guage or Postscript, but it would be awfully handy
if it were. One example of where this could be used
would be if one box had an arrow and a second had
a label for that arrow in a suitably sized box that
you wanted to cover part of the arrow.

Documentation

I find The m b o o k pretty good for the most part,
but people unused to programming mostly find it
impenetrable. But the story for TPm is much
worse. It has seriously retarded the adoption of
I4m as a standard. Several of my colleagues tell
me they won't use IP-w because 'using you

226 TUGboat, Volume 13 (1992), No. 2

can't do X'. In every case, you can do X often
more easily than you can in plain. But it is not doc-
umented anywhere. Our office staff mostly use plain
m because they find the U r n book so uninfor-
mative. As difficult as they find The m b o o k , they
feel they can eventually get the information out of
it, but it just isn't there in the I4W manual. Of
all its deficiencies, the worst is the paucity of ex-
amples. The situation is somewhat better in French
and German, and one of our secretaries makes good
use of Raymond Seroul's book, Le petit Livre de TJjX
[InterEditions, 1989, ISBN 2-7296-0233-XI. A some-
what expanded version, by Raymond Seroul and Sil-
vio Levy, has now appeared in English: A Beginner's
Book of T&X [Springer Verlag, 1991, ISBN 0-387-
97562-41. Leaving all other considerations aside, I
consider LPl$jX far superior to plain because it en-
courages you to think of a document in logical, not
page layout terms. The criticisms of the diagram
mode and \put above are precisely because they are
such a departure from that ideal. Lamport actually
suggests laying your diagrams out on graph paper
before entering them. This is absurd. I have coau-
thored two books using rn and they each include
several hundred diagrams.

Conclusions

I have sucessfully used 'QjX for books, papers and
even routine letters. I find it much easier to use than
the standard text processors. Nonetheless, I find it
has some deficiencies. Since Knuth has decided that

will remain static, the time has come to think
of a possible successor. I have set out above some of
the possible directions in which change might come.
Some of them might be done by a few modifications
to the language that would leave the dvi output for-
mat unchanged. These could be accomplished by
modifications to the underlying language, but would
leave all device drivers and previewers current. How-
ever, some of the changes would require new device
drivers which would render many of our auxiliary
tools obsolete.

When was written the computing power
available to the average user was much less. Freed
from such limitations, we can now hope for a lan-
guage that is a lot more powerful and easier to use.
I hope to see a successor to T)$ that is worthy of
its predecessor.

Since the first draft of this paper was writ-
ten, there has been a new development. A formal
network, called NTS-L ("New Typesetting System
List") has been set up to discuss the question of
a successor to m. All issues are up for discus-
sion. Should this new language be an incremental

improvement to m or a new beginning? Should it
be upward compatible? Should it be aimed at mi-
crocomputers or only for workstations and larger?
Even, should it make a pass at being WYSIWYG?
The debate is wide-ranging and sometimes heated.
Anyone interested should subscribe. Send email to
listserv@vm.urz.uni-heidelberg.de
with a one line message
subscribe nts-1 (Your Name Here).

o Michael Barr
Department of Mathematics and

Statistics
McGill University
Montreal, Quebec, Canada
barrQrnath.rncgill.ca

Approaching SGML from

Reinhard Wonneberger

Abstract

The present memorandum intends to encourage dis-
cussion on a pragmatic m approach to SGML.

It assumes a basic knowledge about SGML and
builds on [WM92], which also contains bibliographic
information.

Comments and contributions are welcome.

Situation

§ 1 Concern
Although m has become a de facto standard by
now, the corresponding General Markup language
I4m cannot claim to be a standard.

This implies severe limitations in using T)$
outside the academic world.

Such limitations might be overcome by combin-
ing TpX with an accepted General Markup standard,
which seems to be SGML.

§ 2 ~ a ~ p 6 s (time of opportunity)
The present development project of a new Um
gives the unique chance to introduce a new Markup
Language instead of staying frozen in upward com-
patibility.

5 3 Conclusion
The community of l$J users, esp. the implementors
and other wizards, are encouraged to think about

@ R.W.

TUGboat, Volume 13 (1992), No. 2

the far-reaching consequences of the present chance
and to actively pursue the project of approaching
SGML from TEX. I suggest an active approach to
SGML to the TEX Implementors Community, i.e.
those colleagues who actively participate in TEX im-
plementation, adaptation, and development.

Suggestions

§ 4 T&X-based Implementation
Rather than following the official approach of us-
ing a parser, the first concern should be to imple-
ment a format which is capable of interpreting
one of the general SGML Document Type Definitions
(DTD) .
5 5 Backing
This suggestion is based on the assumption that TEX
might be a well-suited implementation language.
First implementation experiments seem to be en-
couraging.

8 6 Possible Steps
The project might advance in the following steps:

1. Implement interpretation of a general DTD.
2. Implement document structure validation.
3. Implement definition syntax of SGML.

S 7 UTEX
If the first step could be completed successfully, the
SGML general DTD might be offered either as the
future IPm user interface or as an additional one.

Benefits

§ 8 Savings
The following benefits are anticipated:

1. Elimination of unneccessary parsing software if
not required;

2. Elimination of unneccessary parse processing if
not required.

§ 9 Standardization
SGML processing could inherit most of the advan-
tages of TEX itself, especially

1. vendor independence;
2. portability of the software;

All this could help to avoid a split of user worlds
between SGML and TEX.

[WM92] Reinhard Wonneberger and Frank Mittel-
bach. SGML. Questions and answers. TUG-
boat 13(2):221 (July 1992).

o Reinhard Wonneberger
EDS Electronic Data Systems

(Deutschland) GmbH
EisenstraBe 56 (N15)
D-6090 Riisselsheim
Federal Republic of Germany
uonneberger Q

mzdmza.zdv.uni-mainz.de

Abstracts

Les Cahiers G UTenberg
Contents of Recent Issues

B. GAULLE, ~d i to r ia l : & propos d'erratum;
pp. 1-2

The President of Gutenberg remarks on the
success of the special issues of the Cahiers (the
proceedings of E u r o m and GUTenberg'91 and
'LPremier~ pas en M W ") and corrects some mis-
conceptions regarding the use of TEX, SGML, typo-
graphic style, and TEX in Europe.

E. GOPELT & B. SCHMID, WYSIWYG-m-editors
on the basis of object-oriented system technology;
pp. 3-12

This paper describes the motivation for and
planned implementation of a WYSIWYG editor for
the COMPINDAS (Computerized Integrated Data
Base Production System) of FIZ Karlsruhe.

Michael SPIVAK, UMS-QX: A Public Domain
Document Preparation System Extended
d~S-m; pp. 13-20

UMS-~&X provides three basic extensions to
A M S - W :
(1) As the 'L' in the name implies, I?PMS-'@X

provides the functionality of MTEX, includ-
ing (a) automatic numbering, together with
symbolic labelling and cross-referencing, for
equation numbers, lists, chapter and section
headings, figure captions, theorems, lemmas,
etc., etc.; (b) automatic placement of floating
figures; (c) automatic table of contents genera-
tion and tools for creating an index; (d) literal
mode; and (e) bibliographies (including inter-
facing with BIB^, if desired). However the
approach is rather different, with syntax that is
generally much more concise, and deszgned to
prouzde the user wzth much greater j7exzbzlity.

(2) There are special macros, and extra fonts,
for easily producing complicated commutative
diagrams; the results are at least as good
as those found in any professional books and
journals. There are also special macros for
partitioned matrices and "bordered matrices".

(3) Finally, extensive table macros provide all the
special refinements expected from ~rofessional
typesetters.

228 TUGboat, Volume 13 (1992), No. 2

Pierre MACKAY, Un regard sur les pixels.
Obtention de fontes de qualit6 pour imprimantes &
laser a 300 dpi grhce & METAFONT; pp. 21-35

Two otherwise identical documents printed at
the industry quasi-standard medium resolution of
300 dots/inch on laser printers can appear very
different depending on whether a "write-black" or a
"write-white" engine was used to print them. Most
font-design and font expression systems appear to
favor "write-black" technology, and there is some
reason to suspect that "write-white" will never be
entirely satisfactory. In any case, it is a good idea
for the designer who expects to see a great deal of
300 dots/inch output to be aware of the difficulties
involved in trying to support both technologies with
the same design.

[Editor 's note: This paper is a french translation
of "Looking at the Pixels. Quality Control for 300
dpi Laser Printer Fonts, Especially METAFONTsn in
Raster Imagzng and Dzgztal Typography 11 (R. MOR-
RIS & J. ANDRE eds.). Cambridge University Press,
1991, 205-217.1

Disquettes Euro-OzT@ available from Association
GUTenberg; Adaptation franqaise: Yannis
Haralambous; p. 36

Michel GOOSSENS and Eric VAN HERWIJNEN,
Introduction 6 SGML, DSSSL et SPDL; pp. 37-56

This article provides an introduction to IS0
Standard 8879 SGML, the "Standard Generalized
Markup Language" and discusses its relation with
two other standards being drafted in the area of
electronic document description, DSSSL for the
page layout and SPDL for the visual presentation.

Jacques ANDRE and Philippe LOUARN, Notes
en bas de pages : comment les faire en I4T@?:
pp. 57-70

Some facilities with I 4 m ' s footnotes are ex-
hibited, such as how to call footnotes from tabular
array or how to refer the same note from different
places.

Alexander SAMARIN and Anatoliy URVANTSEV,
CyrTUG, le monde W en cyrillique; pp. 71-73

This article presents an overview of publishing
in the (former) USSR, how fits into this envi-
ronment, and a report on the CyrTUG organization,
its structure and goals.

[Editor 's note: This report was originally pre-
sented at EuroW'91.1

Hanna KOLODZIEJSKA, TfjX en Pologne; pp. 74-77
This is a report on the history and current use

of T)$Y in Poland, including commercial activities a
characterization of the user population.

[Editor 's note: This report was originally pre-
sented at E u r o W ' 9 1 under the title T&X in
Poland.]

Jacques ANDRE et alii, Lu. vu, ou entendu;
pp. 78-83

Short takes on varied topics, with bibliographic
information on recent books and other publica-
tions: orthography reform; typography; periodicals;
publications prepared with, or about (U)T@; con-
ferences.

Table des matikres de 1991; pp. 84-85

Baskerville
Conten ts of Recent Issues

Volume 2, N u m b e r 1, March 1992

Philip Taylor, Colophon; Editorial; p. 1
The editor of this, the second issue of The

Annals of the UK W Users' Group, describes
its production, and relates how he has handled
articles that were received during the extended
lapse between the premier issue and the present
one.

Peter Abbott, Chairman's Report; pp. 1-2
The present Chairman of the UK Users'

Group recounts what has happened in the U.K.
world since the first issue of Baskerville appeared,
and directs some words of encouragement to the
readers, announcing the editor of the next issue,
Sue Brooks.

Madcolm Clark, TUG in Europe and Amerika;
pp. 2-7

The present president of TUG and former
chairman of the UK W Users' Group gives an
account of "the range of 'organised' W related
activities in the world, mainly concentrating on
the known national and language groups." The
groups reviewed are those representing the German-
speaking, Japanese, French-speaking, Nordic, and
Dutch-speaking m users groups and those in the
United Kingdom, Czechoslovakia, Hungary, Poland,
Jugoslavia, Soviet Union, Mexico, and Ireland. This

TUGboat, Volume 13 (1992), No. 2

is followed by remarks on common themes which
recur throughout all the groups.

The final section of the article deals with the
recent history of TUG and TFJ. in particular the
upheaval which resulted in Malcolm's selection as
interim president of TUG, and with his view of the
future.

This paper was originally presented at the
February 1991 Dante meeting in Vienna.

Malcolm Clark, The Outgoing Chairman's Report;
pp. 7-10

This review opens with the statement "The
group's second year can be summarised in a very
similar way to the first -'a measure of success,
leavened with a few disappointments'." A summary
of the year's activities begins with short descriptions
of the meetings: a very wide range of topics was
covered, a t one-day meetings that are relatively easy
to attend owing to the compact geographical area
involved. Various other services are reviewed, both
those specific to the group and some offered jointly
with other groups. The article ends with comments
on the future and some personal observations.

Chris Rowley, Gleanings Past and Present; p. 10
This short article delves into the first issue of

TUGboat to recover some of Knuth's thoughts on
w ' s user interface. It then relates some com-
ments made on and offstage at a recent Monotype
Conference in London.

Chris Rowley and Frank Mittelbach,
The I 4 W 3 Project; pp. 10-11

This is the text of a proposal to the TUG Board
of Directors for support of the IP7&$3 project.

[Editor 's note: A slightly modified version ap-
peared in and TUG News, Vol. 1, No. 1.1

Chris Rowley, The 1990 A.G.M.; pp. 11-12
The official report of the Annual General Meet-

ing of the UK TEX Users Group, held at Aston
University on Wednesday, 17 October 1990.

Chris Rowley, The 1991 A.G.M.; p. 12
The official report of the Annual General Meet-

ing of the UK Users Group, held at Aston
University on Wednesday, 17 October 1991.

Philip Taylor, Postscript; p. 12
Final comments on production of the issue,

plus the editor's best wishes to Sue Brooks, who
assumes the editorship with the next issue.

Late-Breaking News

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was received
by mail, on diskette, and was also retrieved from
remote sites by anonymous ftp. In addition to text.
the input to this issue includes METAFONT source
code and several encapsulated Postscript files. For
one article, which was based on an extended imple-
mentation of m, several illustrations were received
on paper to be pasted in (see the "output" sec-
tion). Most articles as received were fully tagged for
TUGboat. using either the plain-based or IPW
conventions described in the Authors' Guide (see
TUGboat 10, no. 3. pages 378-385). Several au-
thors requested copies of the macros (which we
were happy to provide); however. the macros have
also been installed at l ab rea . st anf ord . edu and
other good archives, and an author retrieving them
from an archive will most likely get faster service.
Of course, the TUG office will provide copies of
the macros on diskette to authors who have no
electronic access.

Font work was required for the article by
salomon on arrows (p. 146).

The article by Rahtz and Barroca incorporates
several (encapsulated) Postscript images, and was
also most reliably processed using the New Font Se-
lection Scheme; camera copy for this article only was
output on the Math Society's Compugraphic 9600
Imageset ter .

About 50% of articles and 60% of the pages in
this issue were prepared using IPW.

In organizing the issue, attention was given to
grouping bunches of p l a i n or articles. to
yield the smallest number of separate typesetter
runs, and the least amount of handwork pasting
together partial pages. This also affected the articles
written or tagged by the staff, as the conventions
of tugboat. s t y or l tugboat . s t y would be chosen
depending on what conventions were used in the
preceding and following articles: no article was
changed from one to the other, however, regardless
of convenience.

Test runs of articles were made separately and
in groups to determine the arrangement and page
numbers (to satisfy any possible cross references).
A file containing all starting page numbers, needed

TUGboat, Volume 13 (1992), No. 2

in any case for the table of contents, was compiled
before the final run. Final processing was done in
3 runs of TI$, 2 of "old" M m , and 1 of IPW
incorporating the NFSS.

The following articles were prepared using the
plain-based tugboat. s t y :

- all articles in General Delivery.
- R.M. Damerell. Knuth's profiler. page 139.
- David Salomon, Arrows, page 146.
- Daniel Levin. . . . the color separation

problem, page 150.
- Philip Taylor, Book review: Victor Eijkhout,

by Topzc, page 185.
- PQter Huszar, Over the multi-column.

page 192.
- abstracts of the Cahzers GUTenberg, page 227.
- abstracts for Baskervzlle. page 228.
- the TUG calendar. page 231.
- announcement of E u r o w 92 in Prague,

page 232.
- these Production notes
- "Coming next issue"

Output

The bulk of this issue was prepared at the American
Mathematical Society from files installed on a
VAX 6320 (VMS) and W ' e d on a server running
under Unix on a Solbourne workstation. Most
output was typeset on an APS-p5 at the AMS using
resident CM fonts and additional downloadable
fonts for special purposes. The one exception was
the article by Rahtz and Barroca mentioned earlier.

One photograph, photographically screened in
the traditional manner, appears in the announce-
ment of Knuth's degree (p. 134). The large arrows
in the Salomon article (p. 146) are METAFONT proof
output printed on an Imagen 5320 laser printer at
300dpi. The gray-scale illustrations in the article
by Levin (p. 150) were provided by the author as
300 dpi laser printer output and pasted in.

The output devices used to prepare the ad-
vertisements were not usually identified; anyone
interested in determining how a particular ad was
prepared should inquire of the advertiser.

Coming Next Issue

Anchored Figures at Either Margin

A figure in a box can be placed in text at one margin
or the other, by measuring the box and adjusting
the paragraph shape parameters so as to allow
room for it. Macros that try to accomplish this
automatically must be resourceful enough to decide
what to do in a variety of special circumstances;
the correctness or appropriateness of each decision
depends on the requirements of the user. Daniel
Comenetz presents his solution to the problems that
arise in mathematics texts.

Z Z ~ : A macro package for books

Paul Anagnostopoulos describes the design decisions
behind a macro package intended to produce books
to varying specifications with a minimum of macro
modification. A book is considered as ,a structure
of blocks, each of which may contain independent
design specifications as well as specs governing the
interaction of adjacent or nested blocks. All the
usual features of scientific ans scholarly books are
supported, including cross-referencing and indexing.
[Delayed by technical difficulties.]

A Multimedia Document System Based on
and DVI Documents

R. A. Vesilo and A. Dunn examine the develop-
ment of a multimedia document system based on
W. Multirnedia document systems involve many
complex components including editors, formatters,
display systems and components to support the dif-
ferent media. By using 7&X to do the formatting,
using a standard text editor to enter the document
text contents and define the document structure,
and modifying a DVI previewer to include support
for non-text contents, the amount of effort required
to develop a multimedia document system is greatly
reduced.

X B i b w and Friends

Support facilities to make BIB^ input more
straightforward and reliable are described by Chris
Bischof. [Delayed by technical difficulties.]

TUGboat, Volume 13 (1992), No. 2 231

Calendar

Jun/ Jul u k m u g : "Design Issues" : A
visit to the Dept. of Typography,
University of Reading.
For information, contact Peter Abbott
(pabbottansfnet-relay . ac .uk).

TUG'92 Conference, Portland, Oregon

Jul 20 - 24 Intensive BeginningIIntermed. '-T]EX

Jul 26 for Publishers

Jul 27- 30 TUG Annual Meeting: '''T'EX in
Context", Portland, Oregon.
For information, contact the TUG
office. (See page opposite inside back
cover.)

Jul 31 - Practical SGML and m
Aug 1 Graphic Design

Aug 3 - 7 Advanced '-T]EX and Macro Writing
Intensive M'

Aug 18 TUGboat Volume 13,
3rd regular issue:
Deadline for receipt of technical
manuscripts.

Sep 3-4 DANTE e.V.: General Meeting,
Clausthal- Zellerfeld, Germany
For information, contact S. J . arma an
(rzsys@ibm.rz.tu-clausthal.de).

Sep 14 - 16 E u r o m 92, Prague, Czechoslovakia.
For information, contact Jifi Veself
(jveselyQcspgukl l . b i tne t) .
(See TUGboat 13, no. 1, p. 107.)

Sep 14- 16 Astronomy from Large Databases.
Hagenau, France.
Topics include tools for integration of
bibliographic and textual information.
For information, contact Dr. Andr6
Heck (Bitnet: HeckQFRCCSC21, or
f33-88.35.82.22).

Sep 15 TUGboat Volume 13,
3rd regular issue:
Deadline for receipt of news items,
reports.

Sep 22

Oct 14

Oct 19-23

Oct 26 - 30

NOV 2-6

Nov 9-13

Nov 17

Nov 19

Nov 24

Dec 15

UK Users' Group joins the
British Computer Society
Electronic Publishing Group.
Nottingham, England.
Topic: Structured Documents.
Host: Prof. David Brailsford.
For information, contact Carol Hewlett
(hewlettavax. l s e . ac .uk).

UK TEX Users' Group, Annual
General Meeting, Aston University,
Birmingham, England. Followed by
a session on "MI$$, A M S - W and
I s l ~ S - w compared for setting maths"
For information, contact Carol Hewlett
(hewlettavax. l s e . ac .uk).

Intensive BeginningIIntermed. 'QX,
Chicago, Illinois.

Intensive I P W , San Diego.
California.

Intensive BeginningIIntermed. T@,
San Diego, California.

Intensive M ' , Providence,
Rhode Island.

TUG boat Volume 14,
lSt regular issue:
Deadline for receipt of technical
manuscripts (tentative).

NTG Fall Meeting,
"IPTEX. MTJ$ 3, and font selection",
Meppel (near Groningen),
The Netherlands. For information,
contact Gerard van Nes
(vannesQECN . NL).

TUGboat Volume 13,
3 1 ~ regular issue:
Mailing date (tentative).

TUGboat Volume 14,
lSt regular issue:
Deadline for receipt of news items,
reports (tentative).

Status as of 1 June 1992

TUGboat, Volume 13 (1992), No. 2

Feb UK rn Users' Group, London.
Topic: Front ends for TEX; how
successful are the WYSIWYG
packages for n o n - w users and
for wizards? For information,
contact Carol Hewlett
(hewlettQvax.1se .ac .uk).

Feb 16 TUGboat Volume 14,
2nd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Feb 24- 27 CONCEPPTS 93, The Prepublishing
Conference, Orange County
Convention Center. Orlando, Florida.
"International Conference on
Computers and Electronic Publishing
and Printing Technologies".
For information. phone:
703-264-7200, Fax: 703-620-9187.

Mar 9 TUGboat Volume 14,
lSt regular issue:
Mailing date (tentative).

Mar 9 - 12 DANTE'93 and General Meeting,
Chemnitz, Germany. For information.
contact Dr. Wolfgang Riedel

Mar 16

Mar

May

May 25

(wolf gang. r iede lQhrz . tu-chemnitz. de).

TUGboat Volume 14,
2nd regular issue:
Deadline for receipt of news items,
reports (tentative).

UK Users' Group, Glasgow,
Scotland. (Two days, just before the
BCS EPSG meeting; postponed from
April 1992.) Topics: METFIFONT,
theoretical and practical; and
font selection schemes, virtual
fonts, multiple languages and
hyphenation, etc. - everything you
need to know to use TEX to typeset
foreign languages. For information,
contact Carol Hewlett
(hewlettQvax. l s e . ac .uk).

UK Users' Group,
Chichester, England. Visit to
John Wiley & Sons Ltd. Host:
Geeti Granger. For information,
contact Carol Hewlett
(hewlettQvax. l s e . ac .uk).

TUGboat Volume 14,
2nd regular issue:
Mailing date (tentative).

Jun 6-9

Aug 17

Sep 14

Nov 23

Society for Technical Communication,
4oth Annual Conference.
Dallas, Texas. For information,
contact the Society headquarters.
901 N. Stuart St., Suite 304,
Arlington, VA 22203-1822.
(703-522-4114; Fax: 703-522-2075)
Proposals for presentations due by
August 1, 1992.

TUGboat Volume 14,
3rd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

TUGboat Volume 14,
regular issue:

Deadline for receipt of news items,
reports (tentative).

TUGboat Volume 14,
Fd regular issue:
Mailing date (tentative).

For additional information on the events listed
above, contact the TUG office (401-751-7760, email:
tugQmath . ams . corn) unless otherwise noted.

EuroW'92, Praha
14-18 September 1992

As already announced, E u r o w ' 9 2 is organized by
the Czechoslovak Users Group in collaboration
with Charles University and the Czech Technical
University, Prague, under the auspices of both
Rectors. It takes place in Prague from September
14 through 18, 1992.

The Programme Committee consists of Peter
Abbott, Jacques Andr6, Jana Chlebikova, Yan-
nis Haralambous, Bernard Gaulle, Karel Horak,
Joachim Lammarsch, Kees van der Laan, Erich
Neuwirth. Petr Novak, Stefan Porubsky. Phillip
Taylor, Jifi Veselj. and Jifi ZlatuSka.

Invited speakers include Yannis Haralambous,
John Hobby, Alan Hoenig, Anita Hoover. Chris
Rowley, Daniel Taupin, Philip Taylor. They will
cover topics including the use of w for "non-
standard" languages, typesetting music, Metafont-
like language for Postscript drawings, special effects
with METAFONT and m. the I P w 3 project.
aspects of the use of and IPW at University.
WEB, and even more . . .

TUGboat. Volume 13 (1992), No. 2 233

Tutorials delivered after the conference by Yan-
nis Haralambous, Phil Taylor and Klaus Thull will
cover METAFONT and advanced topics in m, as
well as an introduction to WEB.

Any questions concerning the programme can
be directed to the Programme Committee chairman,
Jifi ZlatuSka (zlatuska0cspunii2. b i t ne t) .

Why come to E u r o w 92 ?

Besides the privilege of hearing the invited talks
of leading specialists you will have the pleasure of
listening to other lectures and meeting rn friends
from many countries. The meeting is the first to
offer really extensive contacts with people "from
behind the iron curtain". It takes place in the
Golden Heart of Europe-Prague, one of the most
fascinating capitals in Europe. You can visit it at a
surprisingly low cost. Indeed, we would like to make
EuroT~X'92 in Prague accessible to the majority
of TEX fans from all over the world. Please
note that low prices do not mean a compromise
in quality; rather. they take advantage of the
favourable exchange rates applicable to the "hard
currency countries".

Accommodation is booked in a modern student
hostel Kajetanka in double rooms. We plan to
arrange transport by bus to Czech Technical Uni-
versity, where the programme will be held (it is a
25 minute walk from Kajetanka). All participants
will be provided with a card for all Prague public
transport during the period Monday-Friday.

Lunches will be served at the conference site;
during breaks some refreshments will be available.
Dinners are not included so that you can research
Czech restaurants and pubs on your own. An infor-
mal welcome party will be held on Monday evening.
An organ concert (probably on Wednesday) and
some other pleasant surprises can be expected. For
those arriving on Sunday or on Monday morning,
a sightseeing tour on Monday afternoon is under
negotiation. The whole programme from Monday to
Friday forms a package (accommodation in double
rooms, half pension from Tuesday to Friday, open-
ing party on Monday evening, concert, conference
fee, proceedings, tutorials for those who can stay
a bit longer) for 330 DM (60 DM extra for a single
room). For an addztzonal 35 DM (45 DM for a single
room) a day, a limited number of participants may
stay one o r two days more (until Sunday) either
for tutorials or just to enjoy meeting friends and to
have good beer in some of the pubs, such as Good
Soldier Svejk liked. A special programme will be
organized for accompanying persons,

Climate. Since much of Prague's fascination is
historical, architectural and cultural, it can be
enjoyed at any time. The average maximum
temperature in September is 18' C (64' F) and the
weather is relatively stable.

Currency. The Czechoslovak Crown is rated ap-
prox. 17:l to DM, or 28:l to US$. The present
prices of goods are higher, and they are slowly
approaching "western standards", but in many re-
spects Czechoslovakia is considered favorable and
cheap for western tourists.

Transport. Czechoslovakia is easily accessible by
plane. The Prague airport is about 15 km from the
city centre (the Kajetanka hostel is even closer).
Public transport is relatively cheap, but taxi fares
are better agreed on beforehand since prices are not
fixed. Roads are relatively good but with only a
few motorways which are not so fast as in the West
(speed limits: 110 km/h on motorways, 90 on roads,
60 in towns). Parking in Prague is generally diffi-
cult. There are places to park in the neighbourhood
of the hostel, but not a (guarded) parking. Interna-
tional trains connect Prague with Berlin, Munich,
Nurnberg, Wien, Warszawa, Budapest, etc.

Payment. Those deciding to take part are re-
quested to send money via the following account:
34735-021/0100 at KOMERCN~ BANKA, PRAHA
(there is one "hacek" and one "prime" accent in
its name: please, do not forget to use them). The
address of the bank is

KOMERCN~ BANKA,
pob. Praha - MESTO,
Vaclavske nam. 42
110 00 PRAHA 1
Czechoslovakia

while the name of the account is
~eskoslovensk6 sdruieni uiivatelfi TEXu

(our surface address (in Czech): SokolovskA 83, 186
00 Praha 8, Czechoslovakia).

If you are submitting payment, you should also
fill out a registration form. You may obtain a form
by sending your name and a valid email address to:

eurotex a t cspguk1l .bi tnet
(Copies of the form may also be obtained on request
from the TUG office, address on page 131.) Please
indicate how you have transmitted the payment
to the above account, and, if possible, include a
xerocopy of the order. (It could help us to trace
a lost payment.) We were told that the important
thing is to use the Czech name of the bank
mentioned above since its translation might cause
some mistakes.

Publications for the T@ Community

Available now:

1. VAX Language-Sensitive Editor (LSEDIT)
Quick Reference Guide for Use with the LATEX Environment and LATEX
Style Templates by Kent McPherson

2. Table Making - the INRSTEX Method by Michael J. Ferguson

3. User's Guide to the ldxT~X Program by R. L. Aurbach

4. User's Guide to the GIoTEX Program by R. L. Aurbach

5. Conference Proceedings, TEX Users Group Eighth Annual Meeting,
Seattle, August 24-26, 1987, Dean Guenther, Editor

6. The PlCT@ Manual by Michael J. Wichura

7. Conference Proceedings, TEX Users Group Ninth Annual Meeting,
Montreal, August 22-24, 1988, Christina Thiele, Editor

8. A Users' Guide for TEX by Frances Huth

9. An lntroduction to LATEX by Michael Urban

10. LTEX Command Summary by L. Botway and C. Biemesderfer

11. First Grade TEX by Arthur Samuel

12. A Gentle lntroduction to TEX by Michael Doob

13. METAFONTware by Donald E. Knuth, Tomas G. Rokicki, and
Arthur Samuel

14. A Permuted Index for TEX and FTEX by Bill Cheswick

In production:

15. EDMAC: A Plain TEX Format for Critical Editions
by John Lavagnino and Dominik Wujastyk

TEX Users Group
P. 0. Box 9506

Providence, R. I. 02940, U.S.A.

USERS
GROUP

Complete and return this form with
payment to:

TEX Users Group
Membership Department ' 0. Box 594
Providence, RI 02901 USA

Telephone: (401) 751-7760
FAX: (401) 751-1071
Email: tugQMath . AMS . corn

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the 'QX Users Group
and the TUG newsletter, and
TUG News. Members who join after
January 1 will receive all issues
published that calendar year.

Fo r more in format ion . . .
Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

0 Institutional membership
information

Course and meeting information

Advertising rates

Products/publications catalogue

Cl Public domain software
catalogue

More information on Q X

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City

State or Country Zip

Daytime telephone FAX

Email addresses @lease specify network as well)

I am also a member of the following other TEX organizations:

Specific applications or reasons for interest in TEX:

Hardware on which TEX is used:

Computer and operating system Output devicelprinter

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $50.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Regular @ $60 Full-time student @ $50

Amount enclosed for 1992 membership: $

(Prepayment in US dollars drawn on a US bank is required)

Checkimoney order payable to QX Users Group enclosed

1 Charge to MasterCardmSA

I
Card # Exp. date -

I Signature

I USERS I
1 GROUP
Complete and return this form
with payment to:

Q X Users Group
Membership Department
I? 0. Box 594
Providence, RI 02901 USA

Membership is effective from
January 1 to December 3 1. Members
who join after January 1 will receive
all issues of TUGboat published that
calendar year.

For more information . . .
Correspondence

Q X Users Group
653 North Main Street

0. Box 9506
Providence, RI 02940
USA

Telephone: (401) 751-7760
Fax: (401) 751-1071
Email: tugQmat h . ams . corn

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

5 Course and meeting information

5 Products/publications catalogue

5 Public domain software
catalogue

Institutional Membership Application

I Institution or Organization

I Principal contact

I Address

City

State or Country Zip

Daytime telephone FAX

I Email addresses (please specifi networks, as well)

Each Institutional Member entitles the institution to:
0 designate a number of individuals to have full status as TUG

individual members;
0 take advantage of reduced rates for TUG meetings and courses for

all staff members;
be acknowledged in every issue of TUGboat published during the
membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ. / non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 1 2 memberships) $ 8 1 5 / $ 915 $50 ea.
C (includes 30 memberships) $1710 /$I810 $40 ea.

Please indicate the type of membership for which you are applying:

Category - + - additional individual memberships

Amount enclosed for 1992 membership: $

I CI ChecWmoney order payable to QX Users Group enclosed

(payment is required in US dollars drawn on a US bank)

I Bank transfer bank

ref #

Charge to MasterCardNISA

I Card # Exp. date -
I Signature

Please attach a corresponding list of individuals whom you wish to
designate as TUG individual members. Minimally, we require names
and addresses so that TUG publications may be sent directly to these
individuals, but we would also appreciate receiving the supplemental
information regarding phone numbers, email addresses, Q X interests,
and hardware configurations as requested on the TUG Individual
Membership Application form. For this purpose, the latter application
form may be photocopied and mailed with this form.

And you thought that all we knew was TEX !

A R B O R T E X T I Y C

1000 Victors Way Suite 400 Ann Arbor, MI 48108 FAX (313) 996-3573 Phone (313) 996-3566

CAPTURE Version 2
CAPTURE is a system of programs for inserting graph-

ics into T g , on lBMTM PC systems with LaserJetTM (and
PostscriptTM) printers.

r Acquire graphics from r Tested with PCTPTM, Turbo-
redirected printer output, TgTM, ,LLT@~~, and T@PlusTM;
the screen, or file conver- DOSTM 2-5, windowsTM 3.0-3.1,
sion from TIFF and PCX LaserJet I1 and LaserJet Ill.
formats. r Optionally remove extra white space.
r Convert graphics to r Scale graphics to virtua//y any size.

and from PCX format for image editing. r Comes complete with T@ and IATP in-
r Convert graphics to PK/TFM format for sertion macros, printer capture, screen cap-
inclusion in PostscriptTM T g documents. ture, and file conversion utilities.

CAPTURE is designed to work with TP. Graphics files are processed
to remove all control codes and positioning commands that can dis-
rupt TE?(Graphics can be manipulated by T# and treated as any
other font of type. Graphics and text are intermingled gracefully,
using the full power of T@. Notice how the text wraps around the
graphics in this advertisement; it was all done with Tg . In addition,
CAPTURE can convert graphics to the T@ standard P W F M file for-

1 mat. Graphics literally become a T@ type font and can be used with
any TEX platform. For example, IBMJPC graphics from application programs that sup-
port the LaserJet can be inserted into Postscript documents, or used with VMS or UNlX
systems.

Version 1 C usto mers: Wynne-Manley is charging nothing to upgrade.
Version 2 upgrade is available from Micro Programs (see below) for a nominal media and
handling charge. And we thank you for your support.

Distributors:

Micro Programs, Inc. Personal T@, Inc. T@ Users Group
251 Jackson Ave. 12 Madrona Ave. PO. Box 9506

Syosset, NY 11 791 -41 17 Mill Valley, CA 94941 Providence, RI 02940
(51 6) 921 -1 351 (41 5) 388-8853 (401) 75 1 -7760

Wynne-Manley Software, Inc., Los Alarnos, NM 87544, (505) 662-2628

For TEX Users , , , a

New Services and Prices from
Computer Composition Corporation

We are pleased to announce the installation of several
new output services now available to TEX users:

1. High Resolution Laser Imaging (1 200 dpi) from Postscript diskette
files created on either Mac- or PC-based systems.

2. High Resolution Laser Imaging (960 dpi) from DVImagnetic tape or
diskette files using a variety of typefaces in addition to the Computer
Modern typeface family.

3. High quality laser page proofs at 480 dpi.

4. NEW PRICING for high resolution laser imaging:

a. From Postscript text files in volumes over 400 pages $2.00 per page
b. From Postscript text files in volumes

between 100 & 400 pages . $2.25 per page
c. From Postscript text files in volumes below 100 pages . . $2.40 per page
d. From DVI files in volumes over 400 pages $2.1 5 per page
e. From DVI files in volumes between 100 & 400 pages $2.30 per page
f . From DVI files in volumes below 100 pages $2.45 per page

NOTE: DEDUCT $1.00 FROM THE ABOVE PRICES FOR HIGH QUALITY
LASER PAGE PROOFS.

5. All jobs shipped within 48 hours.

Call or write for page samples or send us your file and
we will image it on the output unit of your choice.

&-ZS -=--- = = = - COMPUTER COMPOSITION CORPORATION
I< j - m r t 140 1 West Girard Avenue Madison Heights, MI 4807 1 * : + - a - = < - -
EZ - - - '%--- -- - - (3 13) 545-4330 FAX (3 13) 544-1 6 1 1 - - - - - - - - - - -- --
- - - - - - - Since 1970 -

T I X Publishing Services
From the Basic:
The American mathematical Society offers you two basic, low cost TEX publishing services.

You provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5
phototypesetter. $5 per page for the first 100 pages; S2.50 per page for additional pages.
You provide a PostScript output file and we will provide typeset pages using an Agfa/
Compugraphic 9600 imagesetter. $7 per page for the first 100 pages: $3.50 per page for
additional pages.

There is a S30 minimum charge for either service. Quick turnaround is also provided ... a manuscript
up to 500 pages can be back in your hands in one week or less.

To the Complex:
As a full-service TEX publisher, you can look to the American Mathematical Society as a single source
for any or all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathematical
Society, P. 0. Box 6248, Providence, RI 02940, or call 401-455-4060.

-

FOR YOUR TEX TOOLBOX FOR YOUR Tj$ BOOKSHELF

Macro-Writing

Art and Pasteup

CAPTURE
Capture graphics generated by application programs.
Make LaserJet images compatible with m. Create
pk files from pc l or pcx files. $135.00
texpic
Use texpic graphics package to integrate simple
graphics-boxes, circles, ellipses, lines, arrows-into
your documents. $79.00
Voyager
'I)$X macros to produce viewgraphs-including bar
charts-quickly and easily. They provide format, in-
dentation, font, and spacing control. $25.00

Non-CM Fonts

Printing and Binding

TEX Problem Solving

Camera Work

w B Y EXAMPLE NEW!
Input and output are shown side-by-side. Quickly
see how to obtain desired output. $19.95
TEX B Y TOPIC NEW!
Learn to program complicated macros. . . . $29.25
w FOR THE IMPATIENT
Includes a complete description of T@'s control se-

. quences. $29.25
'I?EX FOR THE BEGINNER NEW!
A carefully paced tutorial introduction. . . $29.25
BEGINNER'S BOOK OF TEX
A friendly introduction for beginners and aspiring
"wizards." $29.95

Keyboarding

Distribution

Micro Programs Inc. 251 Jackson A v e Syosset, NY 11791 (516) 921-1351

Electronic Technical Publishing Services Company
2906 N.E. Glisan Street
Portland, Oregon 97232

503-234-5522 FAX: 503-234-5604
mimi@etp.com

T HE MOST VERSATILE TEX ever
published is brealung new
ground in the powerful and
convenient graphical envi-

ronment of Microsoft Windows: Tur-
~oTEX Release 3.1E. TurboT~X runs
on all the most popular operating
systems (Windows, LM/ISDOS, OS/2,
and UNLX) and provides the latest
TEX 3.14 and M ETR FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, 14TEX, AI\/IS-TEX and A&-
T4TEX, previewers for PC's and X-
servers, M E T R FONT, Computer
Modern and BTEX fonts, and printer
drivers for HP LaserJet and DeskJet,
Postscript, and Epson LQ and FX
dot-matrix printers.

Best-selling Value: TurboT~X
sets the world standard for power
and value among TEX implementa-
tions: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of TEX to
have," l E E E Software called it "indus-
trial strength," and thousands of sat-
isfied users around the globe agree.
TurboT~X gets you started quickly,
installing itself automatically under
MS-DOS or Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-
cludes generous examples and a full
index, and leads you step-by-step
through installing and using TEX and
M E T R F O N T .

Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX command-
line options and T~Xbook interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MS-DOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

MS-DOS Power, Too: TurboT~X
still includes the plain MS-DOS pro-
grams. Virtual memory simulation
provides the same sized TEX that
runs on multi-megabyte mainframes,
with capacity for iarge documents,
complicated formats, and demanding
macro packages.

Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETA FO NT,

previewer, and printer driver source
code, including: our WEB system in
C; P>.SCEAL, our proprietary Pascal-
to-C translator; Windows interface;
and preloading, virtual memory, and
graphics code, all meeting C portabil-
ity standards like ANSI and K&R.

Availability & Requirements:
TurboTjX executables for IBM PC's
include the User's Gulde and require
640K, hard disk, and MS-DOS 3.0
or later. Windows versions run on
Microsoft Windows 3.0 or 3.1. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C, Watcom C 8.0, or Borland C++ 2.0;
other operating systems need a 32-
bit C compiler supporting UNLX stan-
dard I/O. Specify 5-1/4" or 3-1/2"
PC-format floppy disks.

Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-

ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-
~oTEX for 10 days. If you are not sat-
isfied, return it for a 100% refund or
credit. (Offer applies to PC executa-
b l e ~ only)

Free Buyer's Guide: Ask for the
free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics
editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company
PUBLISHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222
FAX (607) 273-0484

AP-T@ Fonts
--

Avant Garde BoM

Avant Garde &,
l&X-compatible Bit-Mapped Fonts

Identical to
Adobe Postscript Typefaces

Avant Garde Dernitold

Avanf Garde geb$::ld

Bookman Light If you are hungry for new Tfl fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The A P - w fonts
serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-'I)$ fonts consist of PK and TFM files which are ex-
act m-compat ib le equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown
at the right. Since they are directly compatible with any
standard TEX implementation (including kerning and liga-
tures), you don't have to be a TjjX expert to install or use
them.

Bookman Dernibold

Demibold BOO k m ~ n [tali,

C o u r i e r
C o u r i e r Oblique

Cour i e r B O I ~

Helvetica
Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 I<B 5-114"
PC floppy disks. The $200 price a,pplies to the first set
you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica., a.nd Pa.latino, all
in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Helvetica Bold

Helvetica ;"bque
Helvetica Narrow
Helvetica Narrow Oblique

Helvetica Narrow Bold

Helvetica Narrow ;"dque
Schoolbook New Century

Roman

School book /,"Ecentu"
Schoolbook
Schoolbook New Century

Bold Italic

The Kinch Conlputer Conlpany

PUBLISHERS OF TURI~OTEX
501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484

Palatino Roman

Palatino 1taIc

Palatino soid

Palatino Fa"/:
Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorpo-
rated. The owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the A P - w fonts. Kinch Computer Com-
pany is the sole author of the AP-'I)$ fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the AP-'I)$ font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.
LaserJet and DeskJet are trademarks of Hewlett-Packard Corporation.
is a trademark of the American Math Societ,y. TurboTj$ and A P - w are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times Roman

Times ,tali,

Times w d

Times :%
Medium Zapf Chance y ltaiic

Svmbol A@r?9AII@
Z a ~ f Dingbats XmQ

ishing Co n~ translates

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using T# or IdT with little or no
TEX knowledge. Your Wordperfect files are translated into TEX or IdTS fi P es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES,
and much more!

Retail Price . $249.00
Academic Discount Price $199.00

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(614)294-3535
FAX (6 l4)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

R. Seroul, Universite Louis Pasteur,
Strasbourg, France; S. Levy, University of
Minnesota, Minneapolis, MN

A Beginner's Book

This is is a friendly introduction to TEX, the
powerful typesetting system developed by Don
Knuth. It is addressed primary to beginners,
but contains much information that will be
useful to aspiring TEX wizards. Moreover, the
authors kept firmly in mind the diversity of
backgrounds that characterize TEX users:
authors in the sciences and the humanities,
secretaries, and technical typists. The book
contains a wealth of examples and many
"tricks" based on the authors' long experience
with TEX.

Contents: What is TEX? The Characteristics of TEX
Groups and Modes The Fonts TEX Uses. Spacing, Glue
and Springs Paragraphs Page Layout . Boxes
Alignments . Tabbing Typesetting Mathematics Q TEX
Programming Dictionary and Index
1991 1283 pp./Soft cover $29.9511SBN 0-387-97562-4

SPRINGER-VERLAG
NEW YORK, INC.

S. v. Bechtolsheim, West Lafayette, IN

TFX in Practice
A recent surge of good TEX implementations
for PC's has put TEX on the disks of many
people including writers, designers, desktop
publishers, and engineers. With such in-
creased interest in TEX, there is a need for
good TEX books. TEX in Practice is the ideal
reference and guide for the TEX community.
The four-volume set is written by an acknowl-
edged expert in the field and addresses the
needs of the TEX novice to the more experi-
enced "T~Xpert." The book provides step-by-
step introduction to the various functions of
TEX with many relevant examples.

Volume 1: Basics
19921359 pp.,9 illus./Hardcover $49.00
ISBN 0-387-97595-0
Volume 2: Paragraphs, Maths, and Fonts
19921384 pp.,22 illus.1Hardcover $49.00
ISBN 0-387-97596-9
Volume 3: Tokens, Macros
19921544 pp.,22 illus./Hardcover $49.00
ISBN 0-387-97597-7
Volume 4: Output Routines, Tables
19921300 pp.,l 0 illus./Hardcover $49.00
ISBN 0-387-97598-5
FOUR-VOLUME SET
1992/$169.0011SBN 0-387-97296-X
Monographs in Visual Communicafion

To Order: Return this coupon with payment to Springer-Verlag New York, Inc, Attn: J. Jeng, 175 Fifth
Avenue, New York, NY 10010, Or Call Toll-Free 1-800-SPRINGER (In NJ, call 201-348-4033).

I Yes! Send me the following books: Name
Address

ISBN 0-387- City
ISBN 0-387- State Zip

Subtotal [] Check enclosed.

* CA, MA, NJ, NY & VT residents add sales tax Charge my: [] VISA [] MC [] AmEx
[] Discover

Shipping $2.50 ($1 .OO each additional book) Card No.
T O T A L Exp. Date

'In Canada add 7% GST. Signature I 7/92 Reference number S914

The '&X Users Group
is seeking applicants for the position of

Executive Director

The individual selected for this position will oversee the business and information
dissemination activities of TUG; direct the promotional program to develop membership
and TUG activities; develop a program of volunteer efforts for TUG activities; manage a
small office staff with clerical, technical, and bookkeeping functions; and interact with
TUG members and others in fields of interest to TUG. The Executive Director will report
to TUG Board of Directors.

The following criteria will be considered as applicants are evaluated:

experience in managing a business;

skill in managing the retrieval, organization and dissemination of
information;

experience with the program Tj$ and related programs;

computer experience and capability of understanding technical
questions regarding Tj$ and related programs;

good writing and speaking skills;

good interpersonal skills;

knowledge of considerations in managing a professional, non-profit
association.

Applicants for this position should send indication of their interest and copies of their
curricula vitae to:

Search Committee
Tj$ Users Group

0. Box 9506
Providence, RI 02940 USA

The Users Group is an Equal Opportunity Employer.

Make Your Best Work
Look I ts Best!

Typesetting Software
For professional publishing and the power
to produce high-quality books, technical
documents, scientific notation, mathemat-
ical formulas, and tables, rely on PCT@ to
make your work look its best.

The PC T@ Laser System includes:

a PCTP and PCTN386
a Our screen previewer, PTI View
a HP Laserjet and Postscript printer drivers
a Computer Modern Fonts at 300dpi
a A M - T @ and IATP Macro Packages
a The PC T i Manual and LA'$ for Everyone

Free Technical Support

PERSONAL

INC
12 Madrona Avenue

Mill Valley, California 94941
(41 5) 388-8853; F a : (41 5) 388-8865

Call for a free catalog and demo disk.
See the best for yourself!

240
237

Cover 3
239
241
244

242,243
247
240
247
245

234,246
238
248

Index of Advertisers
American Mathematical Society
ArborText
Blue Sky Research
Computer Composition
ETP (Electronic Technical Publishing)
K-Talk Communications
Kinch Computer Company
MG Software
Micro Programs, Inc.
Personal rn Inc.
Springer-Verlag
rn Users Group
Wynne-Manley Software, Inc.
Y&Y

1 a toms

MG
Mathematical

Graphics
System

z = 0.4 sin v . an MS-DOS based system for generating high
quality mathematical graphics on screen and for
printing in a Postscript environment. . generates both encapsulated Postscript and special
PostScript for including in a TEX document where
TEX will typeset the labels.

Write or phone for information. MG Software
4223 W. 9th Ave.

Single CPU: US$95.00 Vancouver, B.C.
Shipping: $5 USA & Canada, $10 overseas Canada. V6R 2C6
Demo diskette: $10 (credit towards purchase) (604)-228-8550

without Bitmaps
Wouldn't it be nice to be able to preview DVI files at any magnification, not just those fo
which bitrnap fonts have been pre-built? Or to produce truly resolution-independent output
that will run on any Postscript device, whether image setter or laser printer?

Perhaps you are looking for an alternative to Computer Modern? Well, there now exist
complete outline font sets which include math fonts that are direct replacements for those

do want to remain faithful to CM, there are
rsion of the fonts. We supply the tools to do

o - preview DVI files calling for outline font

Preview at arbitrary magnification

* Preview in windowsTM - a simple, standardized user interface

* Print to any printer with a Windows printer driver

how EPSF files with preview on screen - and insert TIFF images.

SONE - partial font downloading for speed and

* Avoid running out of memory on the printer

* Produce truly resolution-independent output

* Designed from the bottom up for use with outline fonts on the P

available from W in Adobe Type 1 TM form (ATM compati

R Computer Modern fonts - with accented characters built in
lAT$ + S L ~ X fonts in outline form

* Euler font set - the most popular faces from the AMS font set.

* LucidaBBright + LucidaBrightMath - a complete alternative to CM

Resolution-independent Postscript files using outline fonts can be printed by any se
reau, not just those with Tgpertise - and that translates into considerable savings
erhaps it is time to get rid of those huge, complex directories full o f bitmap fonts

Indian Hill, Cartisle, MA 01 741 (800) 742-4059 (508 86 Fax: (508) 371-2004

trademark of Bigelow & Holmea lnc. Type 1 is a trademark of Adobe Systems Inc. T@ is a trademark of the American Mathematical Society

Forty faces of Computer Modern
designed by Donald Knuth

published in Adobe Type 1 format
compatible with

Adobe Type Manager
and all Postscript printers

$345.00 Educational $195.00
Macintosh or MS-DOS

Blue Sky Research
534 Southwest Third Avenue
Portland, Oregon 97204 GSA

(800) 622-8398, (503) 222-9571
FAX (503) 222-1643

Volume 13, Number 2 / July 1992

Addresses

General Delivery Changing m? 1 Malcolm Clark
Editorial comments / Barbara Beeton
TUG seeks Executive Director
TpjX: The next generation / Philip Taylor

Software

Fonts

Graphics

Knuth's profiler adapted to the VMS operating system / R.M. Damerell

Arrows for Technical Drawings / David Salomon

A solution to the color separation problem / Daniel Levin
A style option for rotated objects in 'l&X / Sebastian Rahtz and Leonor Barroca

Book review: An Italian guide to I4m (by Claudio Beccari) /
Marisa Luviset to and Massimo Calvani

Book reviews: Jane Hahn, B!!&X for Everyone; Eric van Herwijnen,
Practical SGML / Nico Poppelier

Book review: Victor Eijkhout, !&% by Topic / Philip Taylor
A TpjX macro index / David M. Jones

Resources

Tutorial

Puzzle

Macros

Names of control sequences / Victor Eijkhout

Where does this character come from? / Frank Mittelbach

The bag of tricks / Victor Eijkhout
Over the multi-column / Pbter Huszrir
The elementary Particle Entity Notation (PEN) scheme /

Michel Goossens and Eric van Herwijnen

From m to I4m / Maria Luisa Luvisetto and Enzo Ugolini
Geometric diagrams in I4m / Peter J. Cameron
How to change the layout with T?Bm 2.09 / Hubert Part1

SGML - Questions and answers / Reinhard Wonneberger and Frank Mittelbach SGML

Dreamboat TEX wish list / Michael Barr
Approaching SGML from TEX / Reinhard Wonneberger

Abstracts Cahiers GUTenberg #12
Baskerville, Volume 2, Number 1, March 1992

Production notes / Barbara Beeton
Coming next issue

Late-Breaking News

News &
Announcements

Forms

Calendar
E u r o m 92, Prague, 14-18 September 1992

TUG membership application

Advertisements Index of advertisers

TUG Membership List Supplements

