
Dialog with TjjX

Michael J. Downes
49 Weeks Street
North Smithfield, RI 02895

m j dQmath. a m . c om

Introduction

On the face of it, of course, 'dialog with T@' doesn't

make much sense, because TEX isn't a person that

can carry on a conversation. The truth is that a
team of real persons, Knuth and the macro writer

(or writers), have tried to anticipate the user's side

of the conversation and prepare good answers in ad-

vance. It's these packaged answers, relayed to the
user through m. that form the other side of the

conversation.
Yet when we deal with a computer program

such as TFJ, our human tendency is to translate the
pseudo-conversation, carried on by printed messages

on the computer screen, into a more familiar frame-

work: natural language conversations with real peo-

ple. This is done easily enough by pretending that

the program is a sort of genie (or lion, in the case of
w) that happens to live inside the computer. This

pretense is particularly convenient in writing about

programs, where it helps cut down on awkward cir-

cumlocutions.
TEX can be run in batch mode or interactive

mode, but the most frequent way of running Tj$

might best be called barely znteractzve: you start

running TEX in interactive mode and give it a file

name to process, whereupon Tj$ typesets the file
and quits, without needing any further input from

you - but you hang around anyway, in case an error

occurs, because if so then you have to type some-
thing in response to the question mark prompt, be-

fore w can finish processing the file. If you don't

expect any errors. however, you could go get a cup
of coffee while T)$ is running, or in the case of a

long document maybe even go home and mow the

lawn.

By dialog with 7&X, then, I don't mean error-

less typesetting runs where the presence of the user
is immaterial; I mean two-way communication with

the active participation of the user, not only in re-

sponding when prompts for a response, but also

in paying attention to any messages QJX may send,

O An extended version of this paper and some

example macro files are available on request from
the author.

whether they require a response or not. More gener-

ally, I'll define dialog with m, for the purposes of
this discussion, as the communication of interestzng

information, in useful forms, between TjjX and the

user, while 7&X is running. Thus if you look a t a

printed document and see that Tj$K put a certain
box in the wrong place, that is useful information,

but it doesn't match my definition of dialog because

the communication didn't take place while TEX was

running.
To give another example, a table macro package

written by Ray Cowan, that I encountered under the
name t a b l s . s t y (an adaptation for W w) , has the

unique feature that you don't have to type a pream-

ble line setting up the format of the columns in a ta-
ble. The format is determined automatically by the

contents of the table. The number of columns are

then reported on screen while is running. I clas-

sify this as dialog, even though Tj$K doesn't stop to

check for any response, because I believe Cowan pri-
marily envisioned the number-of-columns message

as being read by the user while 'I'FJ is running, to

see if the reported number of columns matches the

intended number of columns. In the case of a minor
discrepancy the user can just make a mental note

to check the input file later for proper syntax; but

in the case of a serious discrepancy (93 columns??!

Whoa!), the user could press the interrupt key to

break out of Tj&X and go fix up the table, before

trying again.

On a more practical level, dialog with 7&X usu-
ally involves sending and receiving messages using

the \message, \wri te , and \read commands. In

The QXbook, near the end of Chapter 20, Knuth

writes "It's easy to have dialogs with the user, by

using \read together with the \message command,"
and there follows a brief example involving reading

the user's name into a macro \myname. It's clear

from this passage that what Knuth means by "dia-

log" is the standard sort of programming tasks that

involve providing information to the user, display-

ing menus, asking questions, and handling user re-

sponses. It's easy to identify a number of fairly obvi-
ous principles that should be followed when writing

such dialog into a program:

502 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Dialog with QjX

When asking a yes/no question, the user should

be able to enter y, yes, or even ye, in lowercase

or uppercase, and have the answer understood

to be "yes".

For any menu or question, a default answer

should be provided (when this makes sense),

and the default answer should be as easy as

possible to select.

Users' answers should be repeated back to

them, so that they can verify that the answer

taken in by the program is indeed the answer

that was typed.

The user should be given a chance to undo mis-

takes, e.g., by going back to a specified point

earlier in the dialog and starting over from

there.

When practical, users' answers should be

checked to make sure they're not nonsense;

for example, if the program requests an in-

teger, it should check the response to make
sure the user didn't enter something else en-

tirely. An example of this is the IPm option

file checknum. s t y that was published by Brian

Hamilton Kelly in U K W , vol. 1. no. 1 (4 Jan-
uary 1991) in response to a query.

When giving information to the user, it should

be provided in the best posszble form, where the

meaning of best possible should be determined

by common sense from the circumstances of

a particular application and the targeted user

group. For example, a straightforward use of

the \ t h e command to report the value of a TEX
dimension register such as \vsize to the user

will produce the value in points, down to five

decimal places. For an average author it would

usually make more sense to convert the value

to inches or centimeters, whereas for a typo-

graphical designer or compositor it would usu-
ally make more sense to convert the value to

picas, before it is reported to the user. De-

pending on the unit chosen, it should also be
rounded to the nearest whole unit or tenth of a

unit or something sensible that will avoid bur-

dening the user with irrelevant precision.

It appears that Knuth's words "it's easy"
weren't intended entirely literally, since the whole

section where they appear is marked off with double

dangerous bend signs; furthermore, the very next

thing after the example mentioned above is Exer-

cise 20.18 -marked with a double dangerous bend

sign - which reads,

The \myname example just given doesn't work

quite right, because the (return) at the end of

the line gets translated into a space. Figure

out how to fix that glitch.

The line-ending space is only one of a number of

complications that can hamper the efforts of macro

writers to write dialog into their macros. The aim

of this article is to provide solutions for some of the

complications.

Basic capabilities of TEX for sending
and receiving messages

Tables 1 and 2 list the various means in for

sending messages to the user, and for the user to

reply.

Table 1

Table 2

I / prompt displayed I
Receiving 1 ~ Y W
\read I \controlseq=

I error message I I

Please type another

not found input f i l e name:

interaction

show message

interaction

I in te r ru~t kev I none I

?

?

Notice that there are a few related features of

%;'i, e.g., \errhelp, that have their place in com-

municating something to the user, but that are de-
pendent on the commands listed in the table: for in-

stance, the user won't normally see \e r rhe lp except

by way of \errmessage. It is merely a temporary

storage area for help messages, rather than a func-

tion that can be used to make something happen.

The \message primitive The \message command

is a 'I)$ primitive that prints its argument on
screen. If the current screen position is not at the

beginning of a line, Tj$ will add a blank space at

the beginning of the message text to separate it from

the preceding material. If there isn't enough room

on the current line to fit the entire message text,

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting 503

Michael J. Downes

then will go to the next line before starting

to print the message. If a message is more than

one line long, and the macro writer does nothing to

break it up into shorter pieces, TEX will break it
up without regard to the contents of the message,

even splitting words, using the maximum number of

characters allowed per line (max-print-line, com-
piled into T@C) as the only line-breaking criterion.

To obtain better line breaks, the macro writer can

use the current newline character, determined by the

value of \newlinechar, provided that it is a print-

able character. It is an idiosyncrasy of TE,X that con-

trol characters, such as the ^-J that is the default
newline character in A M S - W and @'I)$, cannot

be used to produce new lines in the argument of a

\message command, whereas in the argument of a

\wri te command they work fine.

The \errmessage primitive The \errmessage

command prints its argument on screen, starting

on a new line, with an exclamation point and
a space added at the beginning, and a period

added at the end. In other words, the command
\errmessageCSurprise) produces

! Surp r i s e .

on screen. Actually it produces more than that -it

also shows the current context, which means the cur-

rent line from the current input file, along with the

line number, and additional information if there is

any (such as the surrounding parts of current macro

expansions).' Newline characters in the argument

of \errmessage operate the same as for \message.

\ e r rmessage is also noteworthy for the error

recovery choices offered by TJ$& at the ? prompt.
Among other things, choosing the 'h' option at the ?

prompt will cause TEX to print on screen the current

contents of the token register \errhelp.

The \wr i t e primitive The \wri te command, like

\message, basically just prints a message on screen.
But communication with the user is not the pri-

mary purpose for which \wr i te was designed. Its
primary purpose is saving index or table of con-

tents information, with the associated page num-
bers, in a separate file for later processing. Because

this kind of use is closely linked to page numbering,

\wri te commands on the current page are normally

saved up and only executed when the page is ac-
tually shipped out, i.e., after the actual page break

has been determined. To avoid such postponement,

\wr i te must be used with the \immediate prefix.

But don't forget completely the link between \wri te

and \shipout , because sometimes it's useful to leave

If the parameter \ e r rorcontex t l ines is set
high enough.

off the \immediate. For instance, if you are work-

ing on page breaks in a long document and want to
find out, without previewing or printing, if a non-

forcing pagebreak command had the effect that you

wanted, you could insert a non-immediate \ w r i t e l 6
just before and just after the intended page break:

\writelGCBefore t he attempted pagebreak.)
\penalty-9999

(or, in M W , \pagebreak 131)

\writelGCAfter t he attempted pagebreak.)

The message from a non-immediate \write16 will

appear just before the closing 1 of the [I pair that

enclose the relevant page number. So if all went well,
one message will appear with one page number and

the next message with the next page number, like

this:

C41 C5

Before t he attempted pagebreak.

I [6
After t he attempted pagebreak.

I C71 [81 [91 . . .
The \show and \showthe primitives The \show

command, used for showing the current meaning of
a control sequence (or indeed of any valid token), is

rather similar to the \errmessage command in what

it produces on screen. The prefix is a greater-than
character instead of an exclamation point. Here's

the result of \newcount\C \show\C:

> \C=\count78.

1.1 \newcount\C \show\C

?

As with \errmessage, displays the surround-

ing context of a \show command; it also offers the
same error recovery opportunities, except that you

can't access \e r rhe lp through the 'h' option, after
a \show command.

The \showthe command is like \show, but is

applied to certain kinds of things such as the names
of count registers and token registers, that have not

only a meaning but also a current value. For in-

stance, here's the result of \C=5 \showthe\C (using
the counter we defined earlier):

> 5.

1 . 3 \C=5 \showthe\C

The \showbox and \showlis ts primitives The

commands \showbox and \showlis ts are similar to

\show in what they produce on screen. Because of
their specialized nature they don't have much rel-

evance to the main theme of this paper, but once

504 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Dialog with !QX

again don't forget about them entirely, because in

certain narrow applications they might be just the

ticket.

Error recovery

After an error message or a \show command, the

user is presented with a question mark prompt.

Typing a second question mark in reply to the

prompt will cause Q$ to list the options that are

available:

. . .
? ?

Type <re turn> t o proceed, S t o s c r o l l

f u tu re e r ro r messages,
R t o run without stopping, Q t o run

qu ie t l y ,

I t o i n s e r t something, E t o e d i t your

f i l e ,

I o r . . . or 9 t o ignore the next I t o

9 tokens of input ,

H f o r he lp , X t o q u i t .
?

Because their main use is in recovering from errors.
it is convenient to call these error recovery optzons.

The insertion and token-skipping options, however,

are potentially useful for other things besides error

recovery.
An example of a typical use of these error in-

teraction possibilities is given in Example 1.

Notable examples of dialog with T '

To flesh out my definition of dialog with let

me give some examples from widely available macro

files. This will also help to illustrate some of the

typical difficulties.

Comment in hyphen. t ex

The standard hyphen. t ex containing U.S. English
hyphenation patterns has a comment after the

\pat t e r n s command:

\pa t te rns< % j u s t type <return> i f

% you're not using INITEX

(Here I have split the comment into two lines be-

cause of the narrow column width, but in the origi-

nal, the comment is all on the same line.) Ordinarily
the macro writer can't use comments to communi-

cate with the user, because comments within the

text of a macro disappear as the macro is defined.

The beauty of the comment in hyphen. tex is that it

appears precisely when needed, because of the way

QjX displays context with error messages: if you

\ input hyphen. t ex when not using INITEX, !QX
will give a n error message when it encounters the

Example 1: Example of using error interaction pos-

sibilities to get past a potentially bad error: a miss-

ing \ \ before an \h l ine in a IPW t abular envi-

ronment.

! Misplaced \noalign.

\h l ine ->\noalign

{\ifnun O=')\f i \hru. . .
1.120 \h l ine

?

Let's see what the help information is.

? h

I expect t o see \noalign only a f t e r the

\ c r of an alignment. Proceed, and I ' l l

ignore t h i s case.

?

LetJ3s try skipping one token to verify what I P ' is

going to process next:

? 2.

?

All right, the opening curly brace has just gone by,

so we are indeed at the beginning of the definition of
\hl ine. We need to insert the \ \ that was forgotten.

and also replace the two tokens \noalign and { that

have slipped by.

? i\\ \noalign{

\pa t te rns command, and as usual, will show the
context around the point of the error, like this:

! Pat te rns can be loaded only by INITEX.

1 . 2 \pa t te rns
< % j u s t type <re turn> . . .

?

This idea could be useful in other applications.

For example, the file I f onts .new of the Mittel-
bach/Schopf font selection scheme (I4m version)

has a statement of the form \ input f ontdef . t ex ,

where the file fontdef . t ex is often missing (in-

tentionally) and the user is supposed to substi-

tute another file name such as fontdef . o r i or

fontdef .max. A comment on the same line as the

\ input statement, listing the alternate possibilities,
could save users a certain amount of flipping pages

in the documentation:

TUGboat, Volume 12 (1 991), No. 4 - Proceedings of the 1991 Annual Meeting 505

Michael 3. Downes

\ input f on tde f . t ex % Other p o s s i b i l i t i e s :

% fon tde f . o r i , fontdef.max

Arns t ex. tex: \p r in top t ions Example 2 shows the

implementation in A M S - m of a \p r in top t ions

command. This allows the user to choose a syntax

check or 'galleys' run, instead of a full typesetting

run, the advantage being an increase in processing

speed. But our primary interest at the moment lies

in the techniques used to present three choices to
the user and read the reply.

This example shows one way of dealing with

the extra space at the end of a macro created us-
ing \read: define some macros consisting of the ex-

pected answers, with the extra space included, and

then use \ i f x to compare them to the user's re-

sponse. I t also shows how to uppercase the user's

response so that lower- and uppercase responses

will both be treated the same. The method used

is the second method given in the answer to The

7&Xbook's Exercise 20.19. One more noteworthy

feature of \pr intopt ions: it runs a loop that

doesn't quit until the user gives an acceptable an-
swer.

Other examples

1atex . tex : \typeout and \ typein are exam-
ples of the kind of basic dialog tools that can

be built into a macro package.

docs t r i p . tex: The docs t r i p . t e x utility by

Frank Mittelbach is used to strip out comment
lines from a documented macro file. It provides

'progress reports' in the form of a message con-

taining a single % or . character. for each line as

it is processed. This produces rows of percent

signs and periods in a random pattern across

the screen, as the documentation stripping pro-

cess chugs along, which helps to alleviate the

monotony of processing a large file.

checknum. s ty : It is often useful to check

replies from the user to make sure they're valid.

Brian Hamilton Kelly's checknumsty (posted

to U K W vol. 91 no. 1 (4 January 1991)) illus-
trates a technique for reading an integer from

the user and making sure they did indeed enter

an integer and nothing but an integer.

animals . t ex , basix. tex: These two files by

Andrew Marc Greene (the former published in

TUGboat 10, no. 4 as part of w r e a t i o n -
Playing games with 7&X's mind, the latter in

TUGboat 11, no. 3 as BaSiX: An interpreter

written in m) are examples of macro files
whose whole purpose is carrying on dialog.

Testf on t . tex: This file, written by Knuth

for his own use in testing new fonts produced

by METRFONT, contains a \help command-

something that would probably be a good idea

for every macro package.

Use of \message and \irnmediate\write

Any expandable control sequences in the argument
text of a \message or \wri te command will be ex-

panded. Consider Table 3. This expansion is usually

useful, but occasionally it can be a hindrance, as for

example if you want to include a " in the text. And
generally speaking, if you want to mention any con-

trol sequence in the argument text, you'll have to
use \ s t r i n g before the control sequence (and fre-

quently \space after it, as well). Table 3 also il-

lustrates the utility of \noexpand for this purpose
(something which was pointed out to me by Michael

Spivak).

Prompting and reading input

Let's return to the AMS- rn \p r in top t ions

example now. Since \W@ is defined to be
\immediate\writel6, and we know from the earlier

discussion that the \wri te command always starts

a new line after its message text, we can see that the

reply typed by the user will appear on the new line
instead of immediately after the colon. This brings

to mind the question: what can we do if we want

the user's reply to appear on the same line?
The way to do this, in general, is by using

\wri te to send all but the last line of a prompt mes-

sage, and use \message to send the last line. (Brian
Hamilton Kelly's checknum . s t y uses this idea.)

\ V O I D 0 you want S(yntax check), G(a1leys)

o r P(ages)?)%

\messageIType S, G or P , follow by
<re turn>: 1%

Dealing with the Control-M/space character

at the end of a \ read macro In \p r in top t ions

a separate macro \SO, \GO, or \P@ is defined for

each legitimate response. If the menu becomes more

extensive, this technique is rather wasteful of hash

size, main memory, and other useful commodities.
The whole problem here is that \read includes the

Control-M character at the end of the user's re-

sponse in the macro being read. Under normal con-

ditions Control-M is converted to a space, of course,

but another possibility-if the user just presses
Return without typing any response-is that the

Control-M will produce a \par token (following the

general rule that an empty line is equivalent to

\par). The best approach (IMHO) is to prevent
the Control-M character from getting into the read

macro in the first place. This can be done in two

506 TUGboat. Volume 12 (1991). No. 4-Proceedings of the 1991 Annual Meeting

Dialog with TFJ

Example 2: \W@ is the A,&-m abbreviation for \immediate\writel6

\def\S@{S 3 \def\G@{G \def\PG{P 1

\newif\ifbadansQ

\def\printoptions{\W@{Do you want S(yntax check),

G(al1eys) or P(ages)?--JType S, G o r P, follow by <return>: }\loop

\read\m@ne to\ansQ

\ x d e f \ n e x t Q { \ d e f \ n o e x p a n d \ A n s Q ~ \ a n s Q)) \ u p p e r c a s e \ e x p a n d a > %

\ifx\AnsQ\SQ\badansQfalse\syntax\else

\ifx\Ans@\GQ\badansQfalse\galleys\else

\ifx\Ans@\PQ\badansQfalse\else

\badansQtrue\fi\fi\fi

\ifbadansQ\WQ{Type S, G or P, follow by <return>: 3%

ways: setting the catcode of ^-M to 9 ('ignore'), or

setting \endlinechar to -1.
But that immediately raises another diffi-

culty: we want to keep the catcode change or

\endlinechar change local so that it will affect only

the \read. This could be accomplished by saving

the current catcode or \endlinechar (just in case)

and restoring it after the \read is done, but it's sim-

pler to enclose the \read in a group:

\begingroup

\endlinechar=-I

\global\readl6 to\answer

\endgroup

Here the \global prefix is necessary in order for

\answer to be properly defined when the group

ends.
The tests in \printoptions can, with this

modification, be simplified to:

\if\Ans@ S . . . \else
\if\Ans@ G . . . \else
\if\Ans@ P . . . \else
. . .
and the macros \SO, \GQ, \PO are now totally un-

necessary. On the other hand, we have advanced to

some splendid new complications: \AnsQ might now

be completely empty, if the user just pressed the Re-

turn key, and an empty \AnsQ would bollix up the

\if tests. This case is easy to handle, though: add

an extra branch \if x\AnsQ\empty . . . at the appro-

priate spot. We have the opposite problem if the

user typed more than one letter: on the true branch

the extra characters will most likely cause spurious
typesetting activity. As it happens, we can kill two

birds with one stone, as we'll see shortly when we

discuss default responses.

Uppercasing input Next let's look at the pro-

cedure used by \printoptions for uppercasing

the user's reply: after reading \as@, \xdef and

\uppercase are applied to it as follows:

\xdef\next@{\def\noexpand\AnsQ{\ansQ))%

\uppercase\expandafterC\nextQ>%

I prefer a slightly more economical version of the

same technique:

\xdef\ansQC\uppercaseI%

\def\noexpand\ans@C\ans@333%

\as@

This may be a bit confusing at first sight. If

\ a m @ contains 's' to begin with, then after the

\xdef has been completed, the definition of \ansQ

is \uppercase{\def \ansQ{s>}. Then calling \ansQ
causes it to redefine itself, but not before the tokens

in the argument of \uppercase are suitably upper-

cased. (Only the 's' is affected because the other

tokens are control sequences or nonletters.)

Notice that the auxiliary macros \Ans@ are no

longer needed. To simplify the structure of macros

using this uppercasing process, it could be embodied
in its own macro:

\def\uppermac#l{\xdef#l{%

\uppercase{\def\noexpand#i{#l>>>%

#I3

Default responses One last refinement in

\printoptions would be to provide a default re-

sponse if the user's response is empty (i.e., they just

pressed the Return key). The method I like involves
an auxiliary macro like the P ' macro \@car:

\def\@car#l#2\@nil{#l>

But since most of us are probably not particularly

well acquainted with the arcane terminology of Lisp,

let's call this macro \f irsttoken instead:

\def\firsttoken#1#2@{#1>

(Using Q as the ending delimiter is pretty safe if

we make sure that it has catcode 11 at the time

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting 507

