
TUGboat, Volume 10 (1989), No. 2

Guidelines for creating portable
METAFONT code

Don Hosek

The community is currently starved for new

public domain meta-fonts and chances are that no

matter how useless you think that some meta-font

you may have created might be, there are at least

forty people "out there" who would want it.

So with this the situation and chances that your

code might find its way to operating systems vastly

different than your own, I would like to offer the

following guidelines to METAFONT designers for en-

suring that their code can be run on other systems

with a minimum of effort.

1 Internal documentation

METAFONT sources can go a long way and be trans-

mitted in many forms. Just because you might

send your source out in some encapsulated format

(e.g., tar or arc) doesn't mean that they will al-

ways be redistributed as such. More than once I've

found myself with a file with an ambiguous name

like newzm.mf and had no indication what it was

part of or intended for. I would recommend that

each source file you create contain the following in-

formation:

The name of the file (this often can get lost).

The last revision date. If you are modifying

an existing METAFONT file, you should retain

the old file's revision date and add your own

along with a description of all changes made.

This will allow easy updates to your file if the

original file is later revised.

The name of the package that the file is part of

(e.g., "CM Pica", "Pandora", etc.).

Your name. This will make it easier for later

users to track you down for complaints/sugges-

tions/whatever. You may also want to include

your current institutional affiliation and e-mail

address as well.

A brief description of the purpose of the file.

This will make things easier on the individual

who later attempts to follow the logic of your

code.

None of these are necessary for allowing a META-

FONT file to run other systems, but they will serve

as an aid to users on other systems attempting to

install your font.

Pierre MacKay has suggested the scheme shown

in Figure 1 for this internal documentation (based

on the file comments used by J. E. Pittman).

2 File names

The most important consideration when selecting

filenames is to do your best to avoid file name con-

flicts. METAFONT1s rule for selecting a file is to look

for the indicated file in the current directory, then

to look in MFINPUTS for the file. Personally, I believe

that the current directory when METAFONT is run

should be the one on which the METAFONT output

will ultimately end up, so in that case, we are left

with essentially a flat file space.' Thus it is essential

to try not to have file name conflicts.

While in theory, this is a nice principle, it might

be asked, "I can easily check my names against fonts

that I have, but how can I be sure that I won't con-
flict with some odd font from someone else?" The

short answer is that you can't. The longer answer

is that it's possible to reduce the probability, simply

by having all the files begin with the same initial

combination of letters. For example, in an extra

symbols font that I'm developing for use with inter-

nal fonts in the Xerox laser printers here on cam-

pus, I prefix each file used with the letters "cs" (for

Century Schoolbook). While I can't know for cer-

tain that I've avoided all conflicts in this manner,
chances are that name conflicts will not occur. As

an added guard against conflicts, you might want to

pick an additional arbitrary letter and tack it onto

the file name to further guard against name conflicts

(personally, I'm partial to "q").

Another important consideration is the fact

that all IBM systems (including PC's) have a file-

name restriction of eight characters. Now, it's not

strictly necessary to make all file names eight char-

acters or less, but it would be helpful to at least

guarantee that file names are unique to the first

eight characters. The PC restriction makes this es-

pecially important as PC floppies are a convenient,

inexpensive, and almost universally readable format

for exchanging information. In addition, in a re-

cent survey of rn users in MAG, over half the

respondents used on an IBM PC or compat-

ible. Ignoring the eight character restriction can

make your font inaccessible to a significant portion

of the TEX community.

Some operating systems, like IBM's VM/CMS

give you a flat file space whether you want it or

not; while one might be tempted to simply choose

to ignore CMS as a METAFONT operating system,

this is not feasible since the speed of IBM main-

frames makes running METAFONT under CMS quite

desirable-running METAFONT on Computer Mod-

ern fonts on an IBM 3081 took an average of 30

seconds per font!

TUGboat, Volume 10 (1989), No. 2

File : MF Inputs U-Wash.&

Author : Pierre A. MacKay

Internet: mackay@cs.washington.edu

Bitnet : mackay@cs.washington.edu

Date : November 27, 1988

This is the University of Washington collection of Imode-defls

together with the macros to provide font-wide specials describing the

Imode-defl that is used for each generated font, and the Xerox-world

comments in the tfm file. If a '? ' is typed as the first response

to the ' * ' prompt after this or a derived base file is loaded,
a list of all current Imode-defls will be given.

This file follows a convention that has emerged in the discussion

of Imode-defls in TUGboat.

I . The print engine is identified wherever possible, rather than

the printer which incorporates that print-engine.

2. Because Imode-defl names may not contain digits, each digit is

given its full name, as in RicohFourZeroEightZero.

WARNING: Some of the modes have never actually been tested

Figure 1: A model for internal METAFONT documentation

If you use a non-standard extension for any of

your METAFONT files, you should take care that it

is three characters or less, for the same reasons as

the eight character limit above.

A file name should ideally consist only of the

letters a-z and the digits 0-9. The first character of

the name or extension should be a letter (some o p

erating systems choke on file names beginning with

numerals). When specifying a file name on an in-
put statement, use all lower case; this will make life

easier for the Unix people.

Finally, never include an explicit directory path

on a METRFONT input statement. Since area

names are necessarily system dependent, this guar-

antees that your code will not be portable.

3 MFT compatibility

MFT is a system for producing "pretty-printed" list-

ings from METAFONT files; it was used in the pro-

duction of Volume E of Computers and Typesetting

and portions of The METRFONTbook. A complete

description of MFT's capabilities and conventions is

beyond the scope of this a r t i ~ l e , ~ but there are some

simple things you can do to prevent MFT from blow-

ing up.

An MFT manual is in the works

Use only a single percent sign on comments.

MFT uses multiple percent signs to flag special

handling code.

Make sure that all comments are valid in-

put. If you refer to any METAFONT commands,

variables, etc. enclose them in I . . . I .
If you must comment out lines of code, either

enclose the entire line in I.. . I as noted above

or use four percent signs (%%%%) to comment out

the line.

4 Coding considerations

Most of the METAFONT code you write will be

portable by default, but there are a few things that

should always be taken into consideration:

Never set mode inside the file. The proper way

to invoke METAFONT is to say

MF \mode=whatever ; input file

This eliminates the need to specify mode inside

the file. Similarly, mag should also not be spec-

ified in a METAFONT file.

Keep the parameter definitions in a separate

file from character definitions. While you might

need a given font only at, say ten point roman,

it's possible that someone else might want a

nine point boldface of the characters you've de-

signed. If you follow the model of Knuth's Com-

puter Modern, this sort of modification will be

much easier.

TUGboat, Volume 10 (1989), No. 2

4.1 Specifying dimensions definegoodx-pixels Converts a sharped variable

Always use sharped units when defining a dimen-

sion in your code and convert the sharped unit to

pixels using one of the METAFONT commands listed

on p. 268 of The M E T R F O N ~ O O ~ . I have encoun-

tered fonts which have specified things like pickup
pencircle scaled 2 which will work fine on a dot ma-

trix printer or even a write-black laser printer but

looks awful on a write-white laser printer. What

should have been done instead would be to spec-

ify some dimension such as tiny# which would later

be converted using define-blacker-pixels into the

appropriate pixel value for the output device.

METAFONT's sharped units provide a method

for specifying units in a device-independent way.

Rather than specify the widths of lines and other

dimensions in terms of pixels, one &st specifies

units in terms of sharped units (you are given all

of TEX'S dimensions to begin with), then converts

them with one of the macros listed below. Each is

called in the form define-pixels(war-one, war-two)
where there can be as many variable names listed

between the parentheses as necessary. For each vari-

able name given, METAFONT will set its value ac-

cording to a conversion into pixels from the corre-

sponding sharped variables. In the example above,

war-one and war-two would hold the pixel values of

var-one# and war-two#.

define-pixels Converts a sharped variable into pix-

els. This is done through a simple conversion.

This should be used for variables which would

not need any of the corrections described be-

low. For example, a parameter used in calculat-

ing the widths of characters (such as Computer

Modern's u#) would be converted into pixels

with this command.

define-whole-pixels Converts a sharped variable

into an integral number of pixels. This is

normally used for variables which indicate the

placement of certain points in the ~ha rac t e r .~

define~whole~verticaLpixels Converts a sharped

variable into an integral number of vertical pix-

els. This is used for the same sort of vari-

ables as define~whole~pixels, but takes into

account any non-unit aspect ratio which may

be used for the output device. This is gen-

erally used for vertical positioning while de-
fine-whole-pixels is used for horizontal pos-

tioning.

For a complete discussion of why using inte-

gral values for various parameters is important, see

Chapter 24 of the The METRFONTbook.

into a value such that a pen drawn using the

value as an x-coordinate will have its left edge

on a pixel boundary. You must have a current

pen selected for this to work. This is generally

used for character sets (such as the one used in

the METAFONT logo) where many of the char-

acters are drawn using a single pen.

define-good-y-pixels Converts a sharped variable

into a value such that a pen drawn using the

value as the y-coordinate will have its top edge

on a pixel boundary. This is the vertical ana-

logue to define-goodx-pixels.

define-blacker-pixels Converts a sharped vari-

able into pixels adding METAFONT's blacker to

the value obtained. This should be used for

a variable which will determine the width of

lines drawn or pens used. This is a very impor-

tant definition since without it, METAFONT's

mode-def convention is almost useless.

define~whole~blacker~pixels Converts a sharped

variable into an integral number of pixels taking

METAFONT1s blacker into account. This should

be used for variables which will determine the

width of lines drawn or pens used which should

be set to an integral value.

define~whole~vertical~blacker~pixels

Converts a sharped variable into an integral

number of vertical pixels. This has the same

relationship to define-whole-blacker -pixels
as define~whole~vertical_pixels has to de-
fine-wholepixels.

define-corrected-pixels Converts a sharped vari-

able into a pixel value after taking into account

the curve overshoot parameter (METAFONT'S

o-correction). This should be used on variables

which give the overshoot for a curved portion

of a character (e.g., the bottom of "U"). The

METRFONTbook has details on when this is ap-

propriate.

definehorizontal~corrected~pixels
Similar to define-corrected-pixels but does

the rounding for a horizontal value.

The METAFONT logo font (which is described

throughout The METRFONT~OO~ and listed in its

entirety in Appendix E of that work) is a good sim-

ple example to see how these different METAFONT

commands are used.

4.2 Compatibility with Computer Modern

Unless your font is designed explicitly for use with

some non-Computer Modern font (e.g., extra sym-

bols for use of with a printer-resident font), it

TUGboat, Volume 10 (1989), No. 2

is probably a good idea to plan your type so that it

is visually compatible with Computer Modern. You

will probably also want to follow the existing

coding schemes (except for odd fonts such as an as-

tronomical symbols font) as well. These practices

carry with them several benefits:

By following existing coding schemes you make

it easier to achieve compatibility with existing

'I'p3 macros.

0 Visual compatibility with Computer Modern al-

lows you to use CM fonts for things such as
typewriter type and math if you so choose.

In addition, if type "A" is visually compatible

with Computer Modern and type "B" is visu-

ally compatible with Computer Modern then

types "A" and "B" should be visually compat-

ible with each other.

The primary objective when striving for "visual

compatibility" is to guarantee that the characters

should align well with Computer Modern. At the

very least, baselines of characters should match well.

To allow use of Computer Modern math fonts with

your typeface, the weights of the characters should

roughly correspond to the weights of corresponding

characters in CM.

As an example, consider Figure 2 which mixes

Computer Modern and Concrete together in sev-

eral contexts. These two typefaces have a roughly

corresponding character grid, but the difference in

weights produces an odd mixture when the two are

~ o m b i n e d . ~ Overall. the samples above give some

indication of the flexibility obtained by striving for

compatibility with Computer Modern.

- - -- - --

Concrete and Computer Modern Roman will not

mix well.

Concrete and Computer Modern typewriter type

w i l l blend somewhat better.

Concrete does not produce optimum results with

I' + k a = 0 Computer Modern math.

Figure 2: Mixing Concrete and Computer Modern

in some different contexts.

o Don Hosek
3918 Elmwood

Stickney, IL 60402

Bitnet: u33297@uicw

In fact, as was explained in TUGboat 10(1),

these fonts were designed for use with the Euler

math fonts.

