
118 TUGboat, Volume 8 (1987), No. 2

line of the WEB file, the higher priority changefile is

used. Priority refers to position wit,hin the list of

changefiles (f l would have a higher priority than

f2).
Conflicts when merging changefiles are in-

evitable. While significant conflicts are not very

likely, since the changes being merged are normally

for different purposes and modify different portions

of the code, conflicts of a trivial nature occur of-

ten. For instance: many WEB programs follow the

example of Stanford and output a "banner line" to

the terminal to identify the program and its version

level! as in:

Qd banner=='This is WEAVE,

Version X.X'

Nearly all changefiles modify this line to reflect

what change they are making to the program, such

as :
Qd banner=='This is WEAVE

with hyperspace option, . . . '
Qd banner=='This is MWEAVE,

Modula-2 WEAVE, . . . '
for modifications to the logic of the program itself

or
Qd banner=='This is WEAVE,

VAX/VMS Version . . . '
Qd banner=='This is WEAVE,

Microsoft Pascal Version . . . '

for the various implementation changefiles. How-

ever, when multiple changefiles are being merged.

the banner line of none of them is correct, since

the version of the program actually executing is a

combination of the two:
Qd banner=='This is MWEAVE,

VAX/VMS Version . . . '
The \title command in the '%mbo" portion

of a WEB program falls in the same category as the

banner line, since it is also a target common to

many changefiles.

The solution to this problem is to create a

third changefile containing nothing but conflict

resolutions. Its change sections would consist only

of the composite banner line and title. It should

be placed first in the list, so that its changes

will override all of the others. Since the conflicts

it addresses are expected, the warning messages

can be ignored. (It goes without saying that any

unexpected conflicts which surface must be analyzed

to insure that they don't change the logic of the

program to an uncompilable or unexecutable state.)

If the sequential approach of TIE is truly

needed, the case where one changefile needs to be

fully applied before the second one is applied to the

result of the first. this can be accomplished serially

by using WEBMERGE to create an intermediate WEB

file and then applying the second changefile to it.

Of course. this does require additional steps, but

that's what batch files and command procedures

are for.

Hopefully, WEBMERGE should be available from

Stanford on the regular distribution tape by the

time this reaches print. The WEB files and the VAX

implementation files should be available from Stan-

ford and additionally from Kellerman and Smith.

For the people who have absolutely no way of

reading a magnetic tape. the IBM PC version is

available from me on PC floppies for a handling

fee. Additionally, the original TANGLE and WEAVE,

the MWEB system described elsewhere in this issue,

and several of the Tm and METAFONT utility

programs (sometimes referred to as myware and

METAFONTware) are also available on floppy. All of

these have change files targeted for Microsoft Pascal

running under MS-DOS on the IBM PC. which is

my development system. As far as other target

computers are concerned. WEBMERGE was cannibal-

ized from TANGLE. so it should be possible to adapt

the current implementation-specific changefile for

TANGLE without too much difficulty. If you have

TANGLE running, you should have no trouble with

WEBMERGE.

How to MANGLE Your Software:

The WEB System for Modula-2

E. W. (Wayne) Sewell

Software Engineering Specialist

Standard Pascal is an incomplete language from a

real-world production software point of view. This

is not surprising, since the language was originally

designed by Kiklaus Wirth as a tool for teaching

structured programming, and was never intended

for development of production code. The only

reason for the widespread use of Pascal is that

the various implementors extended the language

tremendously when they developed their compilers.

VAX Pascal is a good example of a full-featured

production compiler. Its many extensions to Pascal

allow sophisticated systems to be developed with

it. Virtually every implementation of Pascal has

to extend it in some way, since standard Pascal

(as described in Jensen & Wirth) is absolutely

TUGboat, Volume 8 (1987), No. 2 119

unusable. and IS0 Pascal is not much better. While

the extensions make Pascal a viable language,

portability suffers because each of the implementors

extended the language a different way, resulting

in a Babel of dialects that is surpassed only by

the BASIC language. Porting a program from one

Pascal to another is a major effort, even on the

same machine. Typical of the problems encountered

is the case statement. The action to be performed

if none of the cases match is not defined in standard

Pascal. Since this is a major hole in the language,

most implementations try to fill it. Some provide

an else or otherwise clause, others use labels (such

as others: or otherwise:). Whatever mechanism a

compiler uses, it is different from what every other

compiler uses.

The WEB system tries to counteract the porta-

bility problem by using macros for constructs that

should have been addressed in the language and

then redefining the macros in the implementation-

specific change files to generate the correct code.

allowing the generic WEB file to remain constant for

all implementations. While this makes it possible

to write portable Pascal programs, it would still

be much less work if the language itself were more

standardized.

While WEB does a tremendous job of overcoming

the deficiencies of Pascal, there are limits to what

can be accomplished. For instance, Pascal does not

support separate compilation. A Pascal program

is a monolithic block which must be compiled as

a unit. Include files, which allow a program to

be broken up into more than one source file, do

not change this fact because the program is still

logically one large block and must be compiled as

such. Variables not local to a procedure are global

to the entire program and are therefore available

for accidental modification. Unrelated parts of the

program can interact in unexpected ways, especially

if the same variable names are used in more than one

place. For example, forgetting to declare a variable

which should be defined local to a procedure will

be detected immediately by the compiler unless a

variable of a compatible type with the same name

is declared globally. The result is that the wrong

variable. one unrelated to the procedure, will be

modified. Errors of this nature can be very difficult

to find. The WEB system can help detect this type

of error (if the programmer happens to notice the

inconsistencies in the cross-reference listing), but

will not prevent it from happening.

The language Modula-2 was designed by Wirth

to be the successor to Pascal. Unlike the original

Pascal, it was designed to be used for developing

real software. Most of the problems with Pascal are

corrected by Modula-2, including the case problem

mentioned above. The syntax is more straightfor-

ward, with less likelihood of ambiguities. The most

important contribution of Modula-2 is that embod-

ied in the name-the module concept. Modula-2

makes it possible to break up a large program-

ming project into smaller independent pieces, called

modules, each logically isolated from the others via

the software engineering principle of znformatzon

hzdzng.

The Modula-2 language is much more stan-

dardized than Pascal. Since the language is so

much more powerful, there is less need to extend

it. Input and output, the bane of portability, are

completely removed from the language definition

itself and are instead banished to library procedures

that are more-or-less standardized.

While Modula-2 fixes most of the problems of

Pascal and nearly all of the differences between

Modula-2 and Pascal are improvements, a couple

of the features of the language are steps backward,

in my opinion. Case-sensitivity is one of the non-

enhancements. In a Modula-2 program, junk. Junk,

and JUNK would be considered three different

variables. The reason for this change from Pascal.

if any, is not obvious. I have never heard a

reasonable explanation for it. Equally annoying, all

of the Modula-2 reserved words are required to be

in uppercase. This one almost makes sense, since

having the reserved words stand out in this way

would make a regular ASCII listing more readable.

However, I don't feel that this slight benefit is

worth the extra effort involved in writing a program.

Using a powerful editor with macro and/or template

capability which can fill in the reserved words on

behalf of the programmer would make this less

painful. but not necessarily enjoyable. I don't wish

to give the impression that I am down on Modula-2

because of these issues. It is still my language

of choice because the tremendous advantages it

provides greatly outweigh the irritations.

MWEB is a version of the WEB system which has

been customized for the language Modula-2. Many

of the deficiencies of Pascal that are repaired by the

WEB system are unnecessary in MWEB, since Modula-2

fixes most of them in the language definition itself.

Some examples are the else clause on a case

statement, the standard procedure to increment a

variable (INC), and the loop, exi t , and r e tu rn

instructions. To counteract the new problems

introduced by the language, I designed MWEB to

fix Modula-2 in the same way that Modula-2 and

standard WEB fix Pascal. The effort expended by

TUGboat! Volume 8 (1987), No. 2

MWEB in this effort is small compared to the lengths

necessary to bring Pascal to a usable state. The

result of the merger of Modula-2 and MWEB is a

programming system that has the advantages of

both and few of the disadvantages.

The transformation from WEB to MWEB was com-

paratively easy -Pascal and Modula-2 are so much

alike to begin with, at least syntactically. In fact.

Modula-2 is actually less complicated than Pascal

and has a cleaner syntax with fewer ambiguities.

MANGLE and MWEAVE were created by modifying

their regular WEB counterparts with a standard

change file. I wanted to minimize the modifications

to the code, limiting them to those absolutely

necessary to process Modula-2.

Very few modifications were required to trans-

form TANGLE into MANGLE. Many more changes had

to be made to WEAVE to support Modula-2. since

WEAVE has to know enough about the language to

format it properly. Some changes could have been

made with the built-in mechanisms of WEB, such as

the formatting command

format module - program

which creates a new reserved word module and

causes it to be formatted as if it were program.

The problem of this approach is that it has to be

duplicated in every source file, putting the burden

of implementing MWEB on the user rather than on the

developer (myself). I decided to add the Modula-2

reserved words into the internal tables. Several

new reserved words were added (r e tu rn . exi t , by.

impor t . etc.) and others not needed for Modula-2

were dropped (goto. label, downto. file, and

others).

The following issues surfaced during the imple-

mentation of MWEB:

9 Identzfier length. The size of an identifier had to

be increased. The TANGLE limit was insufficient.

since some of the standard Modula-2 library

modules had identifiers far longer, and the

truncated identifiers would not match. Unlike

Pascal. Modula-2 does not specify a maximum

identifier length; all characters in an identifier

are considered significant. However, since

it is difficult to use x as a constant in a

computer program. I just picked a number out

of my hat - 31 characters maximum length. 20

for unambiguous length. It can be changed

if needed. The length of reserved words

also had to be increased so that words such

as definition and implementa t ion could be

accommodated.

Comments. All code related to comments

had to be changed. While Pascal can have

comments delimited by either (* *) or C 1,
Modula-2 uses only the former, since the braces

are used elsewhere in the language definition

(as set delimiters). Fortunately, this is a

common and well-documented modification to

TANGLE, since some of the more primitive Pascal

systems have the same restriction. On the

other hand, Nodula-2 allows nested comments.

so the comment-handling code in MANGLE could

be simplified (the comment delimiters for the

inner nest levels no longer have to be converted

to [1 for the program to compile). The

metaconlrnent delimiters are still @(and a):
although they are converted to (* *) when

output.

Case sensitivity. The automatic forcing of ev-

erything to uppercase by MANGLE was a poten-

tial problem, since Modula-2 is case-sensitive.

This mechanism could not be disabled. be-

cause the Modula-2 reserved words do have to

be uppercase and MANGLE cannot differentiate

reserved words from any other identifiers. I

considered giving MANGLE a reserved word ta-

ble like that of MWEAVE. but that was a more

radical change to the code of TANGLE than

I had planned. I finally decided this was a

non-problem, since all occurrences of an iden-

tifier, definition and references alike, are forced

to uppercase on an equal basis. If definition

modules. implementation modules. and client

modules are all MANGLED, all inst,ances of the

identifier will still match. This automatic forc-

ing to uppercase removes the requirement in

Modula-2 of reserved words being in uppercase

in the source. As described above, the upper-

case words are for readability, but the bold font

used by MWEB is much more readable. Leaving

MANGLE'S uppercase mechanism intact disables

the ability of Modula-2 to have multiple identi-

fiers in a program differing only in case, (junk,

Junk, and JUNK), but I consider this a poor

practice anyway. (I will stop just short of say-

ing that anyone who does it deserves whatever

happens to them.) The only real problem with

the uppercase characters occurs with imported

modules which were not generated with the

MWEB system (such as the library modules sup-

plied with the compiler). For identifiers such as

these, which must contain lower or mixed case.

the WEB command to Lipass through" Pascal

TUGboat, Volume 8 (1987); No. 2 121

code without modification (@=verbatzm text@>) Other special characters. Modula-2 adds some

must be used. For example: new special characters to optionally replace to-

f rom @= InOut @> impor t \\ @= W r i t e s t r i n g @>

Some predefined identifiers are all uppercase to

begin with. such as the primary library module

SYSTEM or the increment instruction INC.

These can be left alone.

Vertzcal bar character. The vertical bar char-

acter (I) had to be specially handled, since it

is used by both Modula-2 and WEB for different

purposes. WEB uses it to delimit Pascal code

embedded within code, such as

The v a l u e of Igood-s tuf f1

s h o u l d be o u t p u t on ly i f

Ibu f fe r_ index<=471 ,

o t h e r w i s e . . .
while Modula-2 uses it to mark the end of

the statement sequence following a case label

(except for the last one), as in

c a s e junk of

I : r := 1 0 ;

m : = 6 0 1
2 : k := 7 1
3: m := 6

end ;

A true conflict between the two usages is un-

likely. because Pascal code within code

usually consists of short expressions or simple

variable names rather than compound state-

ments such as case. MWEAVE has been modified

to identify the usage of the vertical bar by

context. It will use the Modula-2 version in

the code part of a section and the WEB version

within code (including module names and

comments in the code section). If for some

reason a case statement is needed within

code, two adjacent bar characters (I I) are

used to represent the Modula-2 case separator

and are compressed by MWEAVE into an internal

character which is output as the regular vertical

bar character.

Underlzne character. The usage of the uuder-

line character in identifiers. absent from the

Modula-2 language definition as it is from stan-

dard Pascal. is provided by MWEB. I agree with

Donald Knuth that

identifiersseveral-wordslong are much more

readable than IdentifiersSeveralWordsLong,

which is Wirth's approach. MANGLE removes

the underlines before passing the program to

the compiler, like TANGLE does.

. kens which require a two-character combination

or a reserved word in Pascal (# for <>, - for

not, and & for and). Modifying MANGLE and

MWEAVE to handle & and - was no problem, but

is already used by the WEB system for macro

parameters. For example. the two definitions

@d tes t (#)==m[# l <> x[j+#I

@d t e s t (#)==m[# l # x[j+# l

are logically equivalent from a Modula-2 stand-

point, but the output generated by the regular

TANGLE and WEAVE for the second would not be

what the programmer expected. The parsers

of the two programs would not be able to dif-

ferentiate between the middle #. which means

#. and those in the array index expressions,

which are intended to be replaced by the macro

parameter. To resolve this ambiguity. MANGLE

and MWEAVE have been modified to accept the

Modula-2 version of # anywhere in a WEB pro-

gram except within a macro definition, where #

will continue to represent the parameter.

Of course. the old Pascal symbols still work.

These new symbols, and the modifications to

handle them, are largely irrelevant when the

WEB system is being used. because MWEAVE will

convert them to #, 1, and A anyway.

Quotes. Modula-2 allows strings to be delimited

by either single or double quotes (' or "). While

this is a definite improvement. it does conflict

with WEB. in which single quotes delimit regular

strings, while double quotes identify strings

destined for the "string pool", a special WEB

mechanism whereby the strings so designated

are written to a separate text file to be read

at run-time. Rather than disable the string

pool. I reluctantly decided that the user would

just have to continue using single quotes as in

Pascal.

The macro package. Surprisingly few modifica-

tions were required to the WEB macro package.

WEBMAC .TEX. In fact, I decided not to modify

it at all. A new file, MWEBMAC .TEX. inputs the

original WEBMAC . TEX, then redefines one macro

and adds one new one. The comment macro

\C{. . . I was redefined to generate (* *) in-

stead of {). and \VB was added to generate

the vertical bar character. Not counting blank

lines. MWEBMAC. TEX is only five lines long.

The sample program provided with this article.

SCANTEX, actually perfornls a useful function. It

scans a file generated by WEAVE (or MWEAVE. of

TUGboat, Volume 8 (1987), No. 2

course) and copies only the sections which have been

modified by a change file to a new 7QX file, resulting

in an abbreviated program listing containing only

the changes. The unchanged sections are not copied,

nor are the cross-references, the section names, or

the title page, which includes the table of contents.

Typically, a WEB program running on a wide range

of machines (such as itself) has a great number

of change files applied to it. For the most part,

the main portion of the program is identical in

all implementations and certain sections, containing

"system dependencies", are different for each one.

Since WEAVE generates a complete listing every

time it is run, and a program the size of WEAVE

or TANGLE runs to about a hundred pages (and

that is small compared to 7QX or METAFONT),

a lot of paper is consumed printing several large

listings that are essentially the same. Since writing

SCANTEX, I have adopted the practice of printing

one full listing generated from the pure WEB source

(the way it comes from Stanford, with no change

files applied), followed by an abbreviated listing

generated by SCANTEX for each change file applied

to that program. (In fact, in some cases I print

only the changed sections, referring to published

versions of the pure WEB source rather than printing

it myself. In the case of m, I refer to the book

m: The Program; most of the other Stanford-

developed programs also exist as bound documents

(available from Maria Code).

Experienced WEB users may wonder why I went

to the trouble of writing a program to duplicate a

function already provided by the WEB system itself,

since the suppression of unchanged sections can be

accomplished by placing

into the limbo section of the WEB file. The reasons

were:

SCANTEX does not print the index. Since the

index contains entries for the full listing rather

than just the abbreviated one, a program the

size of 7&,X can have an index that is much

longer than the rest of the listing.

Since SCANTEX is an external program, neither

the WEB file nor the changefile need be modified

to turn suppression on or off.

If the TEX file is to be saved, the reduced

version generated by SCANTEX takes up much

less disk space.

4. I was unaware that the builtin mechanism

existed when I wrote SCANTEX (the real reason).

Since it is buried deep in Appendix G of the

WEB manual, it is easy to miss.

As can be seen from the SCANTEX listing, MWEB

is not that different; on first glance, it could be

mistaken for standard WEB. Closer inspection would

reveal the differences in reserved words, in com-

ments, and in compound statements. Note the use

of the elsif statement. The boxes around words such

as "Writestring" are an unforeseen side effect of

use of the "pass through" WEB command described

above to keep selected words from being forced

to uppercase. While startling, it does point out

which identifiers require special treatment. I highly

recommend using the approach taken in SCANTEX:

define simple macros equivalent to each of these ex-

ternal identifiers and use the macro everywhere else

in the program, including the import statement.

This isolates the boxes to the section containing the

definitions rather than sprinkling them throughout

the program.

Hopefully, MANGLE, MWEAVE, MWEBMAC . TEX,

SCANTEX, and a few other sample MWEB programs

should be available from Stanford on the regular

distribution tape by the time this reaches print. The

WEB files and the VAX implementation files should

be available from Stanford and additionally from

Kellerman and Smith. For people who have abso-

lutely no way of reading a magnetic tape, the IBM

PC version is available from me on PC floppies for a

handling fee. Additionally, the original TANGLE and

WEAVE, the WEBMERGE program described elsewhere

in this issue (page 117), and several of the TEX and

METAFONT utility programs (sometimes referred to

as m w a r e and M E T A F O N T W ~ ~ ~) are also available

on floppy. All of these have change files targeted

for Microsoft Pascal running under MS-DOS on the

IBM PC, which is my development system. As far

as other target computers are concerned, MANGLE

and MWEAVE are implemented as standard change

files applied to TANGLE and WEAVE, so they can

be merged with the current implementation-specific

change files. WEBMERGE can be used for this purpose.

If you have TANGLE and WEAVE running, you should

have no trouble with MANGLE and MWEAVE.

