
TUGboat, Volume 7 (1986), Yo. 3 187

I d x m and G l o w

Indexes and Glossaries

Richard L. Aurbach

Monsanto Company

With reference to Jim Ludden's request for a

program to format indices, we have developed

two programs here at Monsanto which you may find

interesting.

I d x m
The I d x w program is an automatic index gen-

erator for I4mY. It features three-level indexing,

visual highlighting of index entries and page number

references, and generates a file which may be \input

into your document to produce a fully-automated

and fully-formatted index.

G l o w

The G l o w program is to glossaries what BIB^
is to bibliographies-it is a program which uses

databases of definitions to produce nicely-formatted

glossaries, using the \makeglossary and \glossary

features of standard U r n .

Both of these programs are being made avail-

able to TUG for distribution to interested parties.

The programs are VAX/VMS specific, but are writ-

ten in C and are (I hope) exhaustively documented.

They are not portable (because they call VAX/VMS

services), but should be relatively easy to port to

other environments. The distribution kit contains

executable images, full sources, users' guides (and

the special document styled needed to generate

them), and on-line help modules.

I request that anyone who enhances these

programs, finds and fixes bugs, or makes any other

changes in these programs (other than porting them

to other environments) let me know so we can also

benefit. I would also be interested in ports to the

VM/CMS environment.

Queries

Editor's note: When answering a query, please send

a copy of your answer to the TUGboat editor as

well as to the author of the query. All answers

will be published in the next issue following their

receipt.

In addition to the item below on change bars

(query by Sylvester Fernandez, Vol. 7, No. 2,

page 110), two responses to the query by Jim

Ludden (ibid., page 111) regarding post-I4TF)C index

formatting appear in the I47&X column, beginning

on page 186.

Form Letters

Is there a package available that allows the gener-

ation of identical letters except for the addressee

field, which is read from a separate file containing

lines of address separated by a delimiter?

John Lee

jslee@nrtc.arpa

Change Bars

Jim Fox

University of Washington

The question of change bars was asked in the last

TUGboat. Here is how we do them at the Academic

Computing Center.

start change bar:

\special{changebar , \the\barwidth)

end change bar:

\special{changebar}

where \barwidth is a (dimen) register that describes

the width of the bar. A vertical rule will be drawn

from the location of the first special to the vertical

coordinate of the second special. Note that the

second special only defines the vertical extent of the

rule - its horizontal coordinate is ignored.

Macros that are compatible with plain. tex

output routines do the positioning automatically -

TUGboat, Volume 7 (1986), No. 3

the user need only type \beginbar and \endbar.

Marks are used to stop and start multiple page

change bars.

The change bar question brings up some inter-

esting points.

A problem arises when you also want to use

marks for something other than change bars: chap-

ter numbers, for example. Inthat case you can't just

have \beginbar include, say, \mark{\startabar>

because you would lose the chapter number infor-

mation that was also being kept in mark text.

I haven't implemented a general solution to

this problem, but I think it could go as follows.

Define a \newmark macro that would be invoked

for each distinct mark function. In this case \new-

mark\barmark and \newmark\chaptmark. Then

provide a \setmarks macro that defs each of the

allocated marks; e.g., in this case \setmarks would

be (automatically) defined as follows:

\def \setmarks{\mark{%

\def\noexpand\thebarmark{\barmark)%

\def \noexpand

\thechaptmarkC\chaptmark>>>

then in the text, the usage is

\def \barmark{\startabar)\setmarks

and

\def\chaptmark{ . . .)\setmarks.

In the output routine the appropriate marks are

first defined and then used:

\botmark . . .

followed by

\thebarmark . . . and \thechaptmark . .

The idea is that the actual mark contains only

\defs, which are defined when \botmark (or \ top-

mark, etc.) is referenced.

The second point concerns \ spec ia l s in gen-

eral. It does not seem to be universally understood

that the random paging mechanism in the dvi

file format implicitly proscribes global specials [cf.

TUGboat 6, #2 pp. 66491. Any global formatting

function that uses specials (changing the paper ori-

entation, for example) must repeat the appropriate

special command on every output page.

In addition, dvi file printers should be careful

not to remember \ spec i a l parameters between

pages.

Letters

Bugs in METAFONTware

To the Editor:

I have discovered a couple of bugs in the META-

FONT utility programs having to do with packed

files and would like to share this discovery.

The first bug is severe, and makes it virtually

impossible to use packed files. It occurs in the

Kellerman and Smith implementation (VAX) of

PKtoPX (version 2.2), the program which converts

packed files to the PXL format most commonly

used by device drivers. The bug is in the change

file rather than the WEB file, so none of the other

implementations are affected. I don't know whether

this bug has been previously discovered or not; the

number of sites using PK files is still limited. Also,

if a driver reads PK files directly, it does not use

PKtoPX and the bug does not apply.

The nature of the bug is that, in the Font

Directory at the end of the PXL file, the pointers

to the glyphs are incorrectly expressed, making it

impossible for the driver to find the rasters for the

glyph in the main part of the file. According to

section 9 of PKtoPX, "The third word of a glyph's

directory information contains the number of the

word in this PXL file where the raster description

for this particular glyph begins, measured from the

first word which is numbered zero." Word, in

this context, refers to a 32-bit number ("longword"

in VAX terminology). The problem is that the

changes for the VAX implementation accidentally

change this offset from an offset of longwords to

an offset of bytes, making the offsets four times
greater than they should be. The procedure in

question, pixel-integer, writes a 32-bit integer to the

PXL file and increments a variable called pxl-loc,

which contains the current offset into the PXL file

in longwords. Kellerman and Smith changed this

procedure to write the integer as four separate

bytes, which is all well and good, but logically

the PXL file is still a stream of longwords, so the

increment of pxl-loc should have been left alone.

To fix the bug, find the following line in

PKTOPX . CH:

p x l ~ l o c : = p x l ~ l o c + 4 ;

and change it to:

i n c r (pxl-loc) ;

This will force the variable pxl-loc to once again be

a longword-count instead of a byte-count.

