
Font-specific issues in pdfTEX

Hàn Thế Thành
River Valley Technologies
http://river-valley.com

Abstract

In this paper I try to give a summary of some font-related topics in pdfTEX. Some
of them are already described in the pdfTEX manual, such as font expansion and
margin kerning, some have been mentioned only in various places like relevant
mailing lists, README or example files coming with patches, and email exchanged
between people interested in a particular topic. This article attempts to put
everything into one place, hoping to make it easier to follow.

1 Introduction

A large part of the pdfTEX extensions is related to
font handling. Having an overview of all those font-
related issues is not always easy, since the pdfTEX
manual is a somewhat dry thing to read as a whole.
Apart from that, there are also things that are not
described in the manual yet. In this paper I will
try to give an overview of font extensions in pdfTEX.
Instead of listing all relevant primitives with their
description, I will write on particular topics that I
consider interesting to mention here.

2 Font expansion and margin kerning

Since these features have been mentioned many times,
I simply skip their description here and only give the
references to relevant sources: [1], [2].

LATEX users who want to try out these features
should start with the LATEX microtype package.
ConTEXt users should consult the ConTEXt manual
first.

Primitives relevant to font expansion:

• \pdfadjustspacing,
• \pdffontexpand,
• \efcode;

Primitives relevant to margin kerning:

• \pdfprotrudechars,
• \lpcode,
• \rpcode.

All those primitives are described very well in
the pdfTEX manual.

3 Additional micro-typographic features

Apart from the above features, pdfTEX has some
additional support for finer control on interword
spacing and kerning. The microtype package pro-
vides an easy access to those features. Furthermore,

the microtype manual [1] has a very good introduc-
tion to these additional features, which I copy here
for convenience (slightly edited):

. . . On the contrary, pdfTEX was extended with
even more features: version 1.30 introduced the
possibility to disable all ligatures, version 1.40 a
robust letterspacing command, the adjustment of
interword spacing and the possibility to specify
additional character kerning.

Robust and hyphenatable letterspacing (track-
ing) has always been extremely difficult to achieve
in TEX. Although the soul package undertook
great efforts in making this possible, it could
still fail in certain circumstances; even to adjust
the tracking of a font throughout the document
remained impossible. Employing pdfTEX’s new
extension, this no longer poses a problem. The
microtype package provides the possibility to
change the tracking of customisable sets of fonts,
e. g. small capitals. It also introduces two new
commands \textls and \lsstyle for ad-hoc let-
terspacing, which can be used like the normal text
commands.

Adjustment of interword spacing is based on
the idea that in order to achieve a uniform grey-
ness of the text, the space between words should
also depend on the surrounding characters. For
example, if a words ends with an ‘r’, the follow-
ing space should be a tiny bit smaller than that
following, say, an ‘m’. You can think of this
concept as an extension to TEX’s ‘space factors’.
However, while space factors will influence all
three parameters of interword space (or glue) by
the same amount—the kerning, the maximum
amount that the space may be stretched and
the maximum amount that it may be shrunk—
pdfTEX provides the possibility to modify these
parameters independently from one another. Fur-
thermore, the values may be set differently for
each font. And, probably most importantly, the
parameters may not only be increased but also

36 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

decreased. This feature may enhance the appear-
ance of paragraphs even more. Emphasis in the
last sentence is on the word ‘may’: this extension
is still highly experimental— in particular, only
ending characters will currently have an influence
on the interword space. Also, the settings that
are shipped with microtype are but a first ap-
proximation, and I would welcome corrections
and improvements very much. I suggest reading
the reasoning behind the settings in section 15.8.

Setting additional kerning for characters of a
font is especially useful for languages whose ty-
pographical tradition requires certain characters
to be separated by a space. For example, it is
customary in French typography to add a small
space before question mark, exclamation mark
and semi-colon, and a bigger space before the
colon and the guillemets. Until now, this could
only be achieved by making these characters ac-
tive (for example by the babel package), which
may not always be a robust solution. In contrast
to the standard kerning that is built into the fonts
(which will of course apply as usual), this addi-
tional kerning is based on single characters, not
on character pairs.

The possibility, finally, to disable all ligatures
of a font may be useful for typewriter fonts.

The microtype package provides an interface
to all these micro-typographic extensions. All
micro-typographic aspects may be customised
to your taste and needs in a straight-forward
manner.

3.1 Letterspacing

We all probably know what letterspacing is and re-
lated problems when using it with TEX. The robust
and reliable way to letterspace a font in TEX is to
create a virtual font which inserts a fixed kern around
each character. The famous fontinst package can
be used to do this, however, it must be done for each
font we want to letterspace. Furthermore, fontinst
is not a tool for everybody.

There have been several attempts in pdfTEX to
solve this problem: one idea was to insert an ex-
plicit kern before and after each character, when the
character is typeset by TEX, roughly like typing i. e.
\kern.1em X\kern.1em for each character ‘X’. This
approach had several problems; the most serious one
is that it disabled hyphenation. Another attempt
used implicit kerns instead of explicit ones; while
this method allowed hyphenation, it caused other
problems. In the end, a method that generates a vir-
tual font on-the-fly was implemented. It works very
much like the way one uses fontinst to letterspace
a font, but it is done automatically in pdfTEX, at
run time. A minimal example looks like this:

\font\f=cmr10
\letterspacefont\fx=\f 100
\fx <letterspaced text>

The above commands create a letterspaced ver-
sion of \f (which is cmr10) as a virtual font. This
virtual font is accessible to the user via the con-
trol sequence \fx. Each character from \fx is type-
set using its counterpart from \f, plus a kern of
50*quad(\f)/1000 at each side.

There are some issues with compensating for the
kern at the beginning/end of letterspaced text. Since
the kern amount is known, it is possible to compen-
sate that kern manually if needed, for example when
using \fx inside an hbox.

In a multiple-line paragraph, one can compen-
sate for the kern at the margin using margin kerning
like follows:

\pdfprotrudechars=2
\newcount\n
\n=0
\loop

\lpcode\fx\n 50
\rpcode\fx\n 50
\advance\n 1

\ifnum\n<256\repeat

This is still not perfect, since you lose the effect
of margin kerning (now all marginal kerns are the
same, so the margins are aligned mechanically as
in the case without margin kerning). If you want
to have both letterspacing and margin kerning, you
need to compensate for the margin kern as follows,
given that you have set up margin kerning for \f
already:

\newcount\n
\newcount\m
\n=0
\loop

\m=\lpcode\f\n
\advance\m 50
\lpcode\fx\n \m
%
\m=\rpcode\f\n
\advance\m 50
\rpcode\fx\n \m
%
\advance\n 1

\ifnum\n<256\repeat

The current version of pdfTEX (1.40.3) still has
a problem when using letterspacing with font expan-
sion. This problem will be fixed soon (not hard to
do).

Relevant primitive: \letterspacefont

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 37

Hàn Thế Thành

3.2 Adjustment of interword spacing

TEX treats all interword spaces from input text as
glue items, while sometimes people need finer control
over interword spaces, since this is one of the most
important elements in paragraph building. Instead
of describing the topic using my own words, I find
it more convenient to quote the conversation via
email between me and people interested in this topic
(Frank Mittelbach and Ulrich Dirr).

Frank: what TEX is missing is a way to kern with
the white space between words. The Adobe fonts
and others might have such kerns but they have
been written for software which does use “space
chars” not glue.

Thành: I also would like to see the space character
to be handled in a different way than it is now.
Turning it into glue is probably not the best so-
lution. It disallows fine adjustment of interword
spaces to make them optically even rather than
mechanically. Kerning with respect to the space
can be used to improve this, but it is certainly not
sufficient. Moreover, the boundary char mecha-
nism has its limitations.

Frank: It would be a very radical step if one would
introduce real space characters which (perhaps)
just before typesetting are replaced by glue not
early on. But again, we have now stayed and
worked with TEX as it is for 20 years and if cer-
tain areas and their underlying ideas prove to
be insufficient, why not experiment with alterna-
tives?

However one other comment, if you look at
what some typographers write about making the
white space visually even, it make me wonder if
you really can do much good about having “kerns”
if you then end up with

<last char><kern><interword glue><kern>

<first char next word>

i. e. with the middle part stretching or shrinking
at a constant rate, or if you really need <glue>

adjustments here.
At least this is what some typographers claim:

that if you need to shrink the interword glue that
this should not be a constant factor as done with
TEX but rather differing depending on the letter
shapes at each side of the interword space.

Ulrich: I have had a short conversation with Frank
(Mittelbach) about an extension/improvement
of the paragraph building algorithm. First I
thought it would be maybe possible with the
help of \sfcode or \spaceskip etc. but this will
not really work.

The idea is—analogous to the tables for ex-
pansion and protrusion—to have tables for opti-
cal reduction/expansion of spaces in dependence
of the actual character so that the distance be-
tween words is optically equal.

When reducing distances the (weighting) or-
der is:

• after commas

• in front of capitals which optically have
more room on their left side, e.g., ‘A’, ‘J’,
‘T’, ‘V’, ‘W’, and ‘Y’

• in front of capitals which have circle/oval
shapes on their left side, e.g., ‘C’, ‘G’, ‘O’,
and ‘Q’

• after ‘r’ (because of the bigger optical room
on the righthand side)

• before or after lowercase characters with
ascenders

• before or after lowercase characters with
x-height plus descender with additional op-
tical space, e.g., ‘v’, or ‘w’

• before or after lowercase characters with
x-height plus descender without additional
optical space

• after colon and semicolon

• after punctuation which ends a sentence, e.g.
period, exclamation mark, question mark

The order has to be reversed when enlarging
is needed.

Note: The principle of how this works can be
seen in figure 1, where the numbers indicate the
preference/order of each interword space when it
needs to be stretched/shrunk.

Figure 1: Interword spaces should be changed with
respect to the adjacent characters.

Thành: I remember discussing this issue long time
ago, when Frank also got involved. The problem
with interword spaces in TEX is that Knuth de-
cided to treat interword spaces like glue, while
IMHO it needs special care because this is one
of the most important factors in building a para-
graph and hence we need a way to distinguish it
from other glues.

From the experience with margin kerning, I
think we should better make some small steps
to see whether it makes sense, rather than start
heavily changing the paragraph building engine.

Thành: I implemented an approach to allow more
control on interword space as we discussed before.
Sorry for the long delay.

I introduced three primitives:
\knbscode—kern before space code,

38 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

\stbscode—stretch before space code,
\shbscode—shrink before space code.

These primitives have the same syntax as
\rpcode etc., i. e.

\knsbcode\font‘\.=200

means that if a period sits before an interword
space (glue), then the interword glue will be in-
creased by an amount of 1em*200/1000, i. e. the
value is given in thousandths of an em as in the
case of \rpcode etc. \stbscode and \shbscode

are similar but adjust the stretch/shrink compo-
nents of the interword glue.

Adjusting the interword glue only has effect
when the space factor of the previous char is
different from 1000.

For now I leave out ligatures and the case
after the interword glue.

A minimal test file might look as follows:

\font\f=cmr10

\pdfadjustinterwordglue=1

\sfcode‘\.=1000

\knbscode\f‘\.=100

\shbscode\f‘\.=200

\stbscode\f‘\.=300

\f <text>

\bye

The above example would adjust every in-
terword glue following a period by adding an
amount of .1em, .2em and .3em to the glue width
resp. shrink resp. stretch component. The prim-
itive \pdfadjustinterwordglue is to switch the
feature on/off at the global level, and setting
\sfcode to 1000 is required to activate this fea-
ture (so they do not interfere with each other).

These features are available in pdfTEX since ver-
sion 1.40, and are also supported by the microtype
package. However, the predefined values are not yet
optimal—probably more experimenting is needed
to tune the parameters to get a good result. Please
refer to the microtype documentation for further
details.

There is no support to adjust the interword
space with respect to the next character. The main
reason is that it is not easy to do in current pdfTEX
code. Hopefully when LuaTEX is ready, this can be
changed.

Relevant primitives:

• \knbscode—“kern before space” code,
• \stbscode—“stretch before space” code,
• \shbscode—“shrink before space” code,
• \pdfadjustinterwordglue—turns on/off the

feature.

4 Additional kerning

This is a feature that allows inserting a kern before

or after a certain character from a font. A minimal
example looks like this:

\font\f=cmr10
\pdfprependkern=1
\knbccode\f‘\:=500
\f <text>

The above example prepends a kern of .5em
before each colon. It is also possible to append a
kern after a character:

\font\f=cmr10
\pdfappendkern=1
\knbccode\f‘\;=100
\f <text>

These features are also supported by microtype
already. However these new features are not flexible
enough to get rid of the need to have active characters
in babel/french, as shown in this email by Daniel
Flipo:

I have heard about new kerning facilities coming
with pdfTEX1.40 and started playing with them
(through the microtype interface, latest version
1.37 2006-09-09 with \betatrue). I would love
to get rid of the four active characters (:;!?) in
babel/frenchb.

Unfortunately, after discussing with Robert
(in copy), it appears that these new kerning fa-
cilities do not quite fulfil what would be needed
for French. I’d like to make a summary of the
required specifications in case you can think of
a possible solution for future developments of
pdfTEX.

1) People who type correctly in French, are
used to type a (normal) space before ‘;:!?’. pdfTEX
1.40 can add a kern before them, but cannot do an
\unskip to remove the typed space. It is hopeless
to try to convince French writers to change their
habits and refrain from entering a space before
‘;:!?’ ;-)

frenchb currently handles the four (active)
punctuation chars ;:!? in two different ways:

—with the option \NoAutoSpaceBeforeFDP,
frenchb replaces the normal space with an un-
breakable one of the correct width, if and only
if a space (normal or ‘ ’) is present before ‘;:!?’.
If no space is typed, frenchb does nothing and
lets the punctuation mark stick to the preced-
ing word. This avoids a spurious space in URLs
(http://...), Windows paths (C:/path), etc.

—with the option \AutoSpaceBeforeFDP (the
default), you can carelessly type any of bonjour!,
bonjour ! or even bonjour~!; frenchb will al-
ways output it correctly—but then you cannot
complain if you get a spurious space in URLs.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 39

Hàn Thế Thành

2) Another (minor) issue occurs with ‘:’. Again,
there are currently two different options in frenchb:

—Most people agree with our « Imprimerie
nationale » that ‘:’ should be surrounded by two
spaces of the same length, the first one being
unbreakable, while the other three (;!?) get a thin
space (kern in TEX) before and a normal space
(glue) after. That’s what frenchb does by default.

—Some typographers argue that ‘:’ should
be treated like the other three, so an option is
provided in frenchb to satisfy them.

AFAIK pdfTEX 1.40 can add a kern before a
character but not a glue, so the spaces around ‘:’
might look asymmetrical in the first case if TEX
stretches the second one.

3) Guillemets are less problematic because
they are currently entered with commands (\og
and \cg), not as characters. Spaces after the
opening ‘«’ and before the closing ‘»’ should
be unbreakable but stretchable (currently these
are .8\fontdimen2 plus .3\fontdimen3 minus
.8\fontdimen4). Moreover, a kern after ‘«’ breaks
hyphenation of the following word as Robert al-
ready pointed out on the pdfTEX bug list.

So the current situation still needs improvement,
which is likely left to LuaTEX.

Relevant primitives:
• \knbccode—“kern before character” code,
• \pdfprependkern—toggle prepending of kerns,
• \knaccode—“kern after character” code,
• \pdfappendkern—toggle appending of kerns.

5 Support for ToUnicode map

ToUnicode map is a concept in the PDF specification
that allows mapping from character codes in a font to
corresponding Unicode numbers. The purpose is to
allow PDF browsers to perform properly operations
related to text contents like search, cut and paste.
Support for this feature was added mainly to make
PDF files produced with the MinionPro package [3]
searchable. If you are having trouble with PDF pro-
duced by pdfTEX not being searchable with some
fonts, give this feature a try (N.B.: this feature only
works for Type 1 fonts). A minimal example:
\input glyphtounicode.tex
\pdfgentounicode=1
<text>

If glyphtounicode.tex is not available in your
TEX distribution, it can be downloaded from [4].
This file covers most common cases. If you want to
add your own entries, here is an example how it can
be done:

Suppose that you have a font which has another
variant of letter ‘A’, named e. g. ‘myCoolA’, and

you wish that glyph to be found when you search
for ‘A’. Then you add to glyphtounicode.tex (or
insert somewhere in your TEX file) a line saying:
\pdfglyphtounicode{myCoolA}{0041}

which means that the glyph with name ‘myCoolA’
has the corresponding Unicode number 0041 (which
is the same as for the normal ‘A’). This would make
your ‘myCoolA’ behave like ‘A’ regarding operations
like search, cut and paste.

6 Support for subfont

TEX was designed to work with 8-bit fonts only. CJK

languages however use fonts with thousands of glyphs.
To make those fonts work with TEX, a trick called
‘subfont’ was developed by Werner Lemberg for his
CJK package. The subfont technique splits a huge
font into smaller fonts, each of them containing up
to 256 characters.

Explaining the subfont mechanism is out of
scope for this paper, so I simply refer people with
further interest in this topic to [5]. Here I try to give
a simple example.

Suppose we want to use the Bitstream Cyberbit
Unicode font. This font has about 30 000 glyphs
and covers many languages. The fontfile is called
cyberbit.ttf. We want to use this font to typeset
CJK languages written in UTF-8 encoding.

The first step is to generate the TFM subfonts:
ttf2tfm cyberbit.ttf cyberb@Unicode.sfd@

The ttf2tfm program is part of the FreeType 1
bundle; it comes with all major TEX distributions
like TEX Live or MiKTEX. Unicode.sfd is a subfont
definition that comes with the CJK package. It is
basically a text file containing instructions how to
split a large font into subfonts. The above command
will produce a bunch of TFM files with names in
form cyberbxx.tfm, where xx are two lowercase
hexadecimal digits. Copy the TFMs to a location
where pdfTEX can find them.

The next step is to tell pdfTEX about the sub-
fonts by adding to your TEX file a line saying:
\pdfmapline{+cyberb@Unicode@ <cyberbit.ttf}

The effect of the above command is that pdfTEX
will be able to pick up the right glyphs for those TFMs
from cyberbit.ttf and embed them as subsetted
TrueType fonts in the PDF output. So it is no longer
necessary to convert cyberbit.ttf to Type 1 sub-
fonts and embed them, or to run ttf2pk. A complete
minimal example:
\documentclass{article}
\usepackage{CJK}
\pdfmapline{+cyberb@Unicode@ <cyberbit.ttf}

40 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

\DeclareFontFamily{C70}{cyberbit}
{\hyphenchar\font -1}

\DeclareFontShape{C70}{cyberbit}{m}{n}
{<-> CJK * cyberb}{}

\begin{document}
\begin{CJK}{UTF8}{cyberbit}
\CJKnospace
<some CJK text in UTF-8 encoding>
\end{CJK}
\end{document}

There are many details that are not mentioned
here, however the above example should give a good
feeling about what can be done.

7 runpdftex—a wrapper to run pdfTEX

This section is not about a font-related topic in
pdfTEX, but it is also relevant to pdfTEX so I take
this opportunity to mention it.

runpdftex is a wrapper that allows applications
to call pdfTEX via a well-defined API in C. The main
intention is to hide TEX-specific details from the
application that calls pdfTEX to generate a PDF file.
A developer can call pdfTEX to convert a TEX file
to PDF using library calls that are robust, easy to
understand and use, and take care of error handling.
This way, a Web developer who is not a TEX expert
can set up a system that uses pdfTEX to create PDF

output on-demand, for example some report, form,
timetable or bank statement. The Web developer
can ask or hire a TEX guru to write a TEX file or
template that produces the required output.

This is still an experimental project, however
I hope it will make pdfTEX more friendly to Web
developers who need to create PDF on-demand but
are too scared by TEX’s complexity to give it a try.
The API is available only for C at the moment, but
support for other languages will be added. This
wrapper has been designed with pdfTEX in mind,
but can be used to run other TEX variants as well,
for example LuaTEX when it is ready. For further
information about runpdftex see [6].

References

[1] The manual of the LATEX microtype
package by Robert Schlicht is available at
http://ctan.org/tex-archive/macros/
latex/contrib/microtype/microtype.pdf

[2] Hàn Thế Thành, Micro-typographic extensions
of pdfTEX in practice, TUGboat, vol. 25
(2004), no. 1—Proceedings of the Practical
TEX 2004 Conference, pp. 35–38. (Online at
http://www.tug.org/TUGboat/Articles/
tb25-1/thanh.pdf)

[3] The MinionPro package containing LATEX
support for Adobe MinionPro fonts is available
at http://www.ctan.org/tex-archive/
fonts/minionpro

[4] Definitions for ToUnicode entries can be
downloaded from http://pdftex.sarovar.
org/misc/glyphtounicode.zip

[5] The CJK package for LATEX is available at
http://cjk.ffii.org/

[6] The runpdftex wrapper is available at
http://runpdftex.sarovar.org/

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 41

