
Latin Modern: Enhancing Computer Modern with accents, accents, accents

Bogus law Jackowski
BOP s.c., Gdańsk, Poland
B.Jackowski@gust.org.pl

Janusz M. Nowacki
Foto-Alfa, Grudziadz, Poland
J.Nowacki@gust.org.pl

Abstract

The number of (free) fonts prepared with METAFONT is surprisingly small com-
pared, e.g., to what is available in the commercial market in other formats. Well,
perhaps not so surprisingly: METAFONT generates TEX-oriented bitmap fonts
which have not become popular outside the TEX world.

Accepting this irksome situation as a challenge, we have prepared META-
Type1, a package for generating fonts in the PostScript Type 1 format accepted
world-wide. The package makes use of METAFONT’s “sister”, namely META-
POST, and a few other utilities, such as awk and t1utils.

Recently, an opportunity arose to embark METAType1 upon enhancing the
Computer Modern family of fonts with diacritical characters, thus following in
Lars Engebretsen’s footsteps, who also recognized the importance of the problem
and created the AE (Almost EC) collection of virtual fonts. The task turned out
to be fairly complex but well-suited for a fully programmable engine like META-
Type1. We here report on the outcome of the project, i.e., the Latin Modern
family of fonts in the Type 1 format, and share the experiences gathered while
accomplishing the task.

1 Introduction

Accented characters play the rôle of enfants terri-
bles in the world of computers. Anybody who has
to communicate with another computer system in
a language other than English knows that using so-
called “funny characters” is not fun at all.

1.1 Those pesky diacritics

A giant step towards putting some order into the
chaos was the Unicode standard (ISO/IEC 10646)
published ten years ago. Unicode, obviously, does
not remove all the problems from the font play-
ground, and even adds a few new ones (e.g., prob-
lems with the size of font files and with the regis-
tration of non-standard characters and languages).
Nevertheless, one can believe that the world will be-
come a bit better when Unicode turns from the stan-
dard de nomine to the standard de facto.

TEX’s 8-bit (i.e., 256 characters per font) par-
adigm is becoming more and more obsolescent, and
enhancing it with multi-byte character codes seems
inevitable. Such efforts as the Ω Project [11], devel-
oped by John Plaice and Yannis Haralambous, can-

not be overestimated from this point of view. But
the typesetting system itself is only one side of the
coin. The other is the collection of fonts it uses.

Originally, TEX was equipped with the Com-
puter Modern family of fonts (CM) which did not
contain diacritical characters. Those few TEX users
who would need accented letters were supposed to
employ the \accent primitive. The immense popu-
larity of TEX in countries that use lots of diacritical
characters invalidated this presumption. At least
three reasons can be set forth: (1) accented char-
acters do not behave like “normal” ones, i.e., they
interfere with important TEX algorithms such as hy-
phenation and insertion of implicit kerns; (2) the CM

fonts do not contain all necessary diacritics, e.g., an
ogonek accent (used in Polish, Lithuanian, Navajo)
is missing; (3) such diacritical elements as cedilla
and ogonek, when treated as “accents”, overlap with
a letter, which precludes some applications, e.g.,
preparing texts for cutting plotters (see figure 1),
even if outline fonts are used. The lesson is obvi-
ous — the CM family should be extended by a vari-
ety of diacritical letters.

64 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting



Latin Modern: Enhancing Computer Modern with accents, accents, accents

In this paper we would like to present our ap-
proach to solving the problem, i.e., the open source
family of fonts, Latin Modern (LM), in the Post-
Script Type 1 format [2], prepared using META-
Type1, a METAPOST-powered package [8] (see sec-
tion 2.4). We believe that the LM family is a de-
cent alternative to the other extensions of the CM

family — we expect it to be a handy collection of
fonts for typesetting in Latin-based alphabets. The
fonts are also equipped with Printer Font Metric
files (*.pfm) and therefore can be used as system
fonts in GUI systems. Finally, they can be used
with the CM metrics (e.g., via psfonts.map), so as
to preserve typesetting of existing documents.

1.2 A gulp of history

Needless to say, the lack of diacritical letters in the
CM family was recognized almost from the very be-
ginning by TEX users who had to struggle with the
typesetting of languages other than English. Only
in 1990, however, during the TUG meeting in Cork,
Ireland, did the international TEX community de-
cide that fonts in the so-called Cork Encoding (EC

or, in LATEX lingo, T1) should be prepared for Eu-
ropean TEX users [6]. The work on EC fonts started
soon after the Cork meeting. Norbert Schwartz de-
signed a prototype, the so-called DC fonts. The work
was then continued by a team led by Jörg Knappen.
The final release of EC fonts was announced in 1997.

It was an important achievement. Neverthe-
less, the Cork Encoding conformed to TEX’s 8-bit
paradigm and therefore was not able to contain all
characters occurring in European languages, not to
mention other Latin-based alphabets, such as Viet-
namese and Navajo.

For a few years, EC fonts were available only in
a TEX-specific bitmap form (pk). Nowadays, with
the advent of electronic publishing, bitmaps are not
acceptable. At least two factors can be pointed out:

Figure 1: The letter Eogonek from Times New
Roman for Windows XP (left), from aer10 (middle),
and from lmr10 (right); only the latter form,
with a single outline, is acceptable in professional
applications.

(1) the scaling of bitmap fonts is troublesome — they
look nice only if their resolution matches the reso-
lution of the device; (2) in many cases, outline fonts
turn out to display much better and, paradoxically,
faster on a screen, e.g., when used in pdf. (Happily,
Adobe Acrobat 6 has improved handling of bitmap
fonts considerably, and non-Adobe programs with
decent results are also available.)

This inspired Lars Engebretsen, who prepared
a set of TEX virtual fonts containing basic diacrit-
ical characters [4]. The virtual fonts could refer to
the excellent outline version of the CM family which
had appeared in the meantime. It had been cre-
ated in 1988 by Blue Sky Research for the American
Mathematical Society in PostScript Type 3 format,
converted in 1990 by Y&Y into the hinted Type 1
format, and released in 1997 for public use by the
AMS. Engebretsen called his collection AE — “Al-
most EC”. His virtual fonts suffer, however, from
the same limitation as TEX does, i.e., the number of
characters is limited to 256. Moreover, as we have
mentioned, superimposing a diacritical element on
a character reveals undesirable features when the
character is stroked rather than filled (see figure 1).

Only recently, automatically traced fonts in the
PostScript Type 1 format, based on the EC fonts,
have been published: Péter Szabó’s Tt2001, Vladimir
Volovich’s CM-super (both in 2001; [14] and [15], re-
spectively), and a newfangled CM-LGC from Alexey
Kryukov (March 2003). Note, however, that Szabó
courteously “recommends the wonderful CM-super
package instead of his own Tt2001”. Indeed, Volo-
vich’s collection contains many more font variations
and covers a broader character set than Szabó’s.
Kryukov’s collection is, in a way, a supplement to
CM-super. The creation of these packages was pos-
sible thanks to a marvelous tool provided by Martin
Weber, namely, autotrace [16].

Volovich’s accomplishment seems to bring to an
end the long-lasting endeavours to introduce diacrit-
ical characters into TEX’s realm. Do we really need
yet another collection of fonts?

2 Another viewpoint

Autotraced fonts, in spite of their many advantages,
have drawbacks. Objectively, the most important
one is perhaps the size of a font. Such fonts are usu-
ally larger than visually similar fonts having care-
fully designed outlines because of a greater num-
ber of nodes in the outlines. Compare, for example,
Volovich’s fairly tidy CM-super fonts with AMS CM

and LM: the number of bytes per character is 260,
200, and 135, respectively. Twice is not too much,
but when many magnifications are included (see sec-

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 65



Bogus law Jackowski and Janusz M. Nowacki

tion 2.1) it makes a difference. Incidentally, the
size of the CM-super fonts can be reduced by circa
10 percent by using a subroutine compression mod-
ule PACKSUBR from METAType1 (actually, it is a
short awk script).

For us, however, more important are arguments
of a rather imponderable nature. We stand firmly by
the conception underlying the TEX and METAFONT

design: every detail, be it a typesetting or a typeface
design, should be controllable and replicable.

This is not the case with autotraced fonts. You
must rely, e.g., on the nodes selected by the tracing
engine. Volovich notes that the FontLab program
(very good but commercial) was used for improving
the fonts, namely, for hinting and reducing the num-
ber of nodes; therefore, the process cannot be easily
repeated somewhere else. In other words, there are
actually no sources for the CM-super family. The
consequence is that tfm files have to be generated
from afm’s (using, e.g., the AFM2TFM program),
which adds further uncontrolled factors. For exam-
ple, one cannot suppress overshoots, i.e., characters
‘o’ and ‘x’ will usually have slightly different heights,
unlike the original CM fonts.

Speaking of the AFM2TFM converter, please
note that unfortunately it cannot produce mathe-
matical fonts. One has to use METAFONT or META-
POST (or manually edit property lists generated by
tftopl or vftovp) in order to exploit such features
as charlist or extensible. Ignoring this aspect
would mean, in our opinion, the waste of the TEX
equipment for mathematics.

Having said this, we would like to emphasize
that we highly esteem the work of Szabó, Volovich,
and Kryukov. Our predilection to another solution
may be regarded as a natural, if not advisable, dif-
ference of viewpoints.

2.1 Too many font sizes

There is one more issue, related indirectly to the
problem of “bitmaps versus outlines”, namely, the
number of font sizes for a given typeface, or more ad-
equately — proportions. Donald E. Knuth, following
the typographic praxis, implemented fonts having
different proportions for different sizes (5, 6, 7, 8,
9, 10, 12 and 17 points). John Sauter attempted
to go even further [13]. He prepared METAFONT

programs that interpolate (and even extrapolate)
Knuth’s font parameters to non-integer font sizes.
We can accept Sauter’s approach as an interesting
experiment, admissible for bitmap fonts. Neverthe-
less, using it for outline fonts is at least controversial.

We believe that, in general, four font propor-
tions would suffice: heading (17 pt), normal (10 pt),

script (7 pt), and second-order script (5 pt, “script-
script”). Because of the well-established tradition,
we cannot refrain from using Knuth’s scheme, but
we would strongly discourage extending it.

For these reasons, we accept with difficulty the
enormous number of different sizes and proportions
present in both the EC and CM-super font families.
This is apparently the inheritance of Knuth’s and
Sauter’s ideas. We would gladly discard most of the
fourteen renditions of a single typeface (in sum, font
sizes 5, 6, 7, 8, 9, 10, 10.95, 12, 14.4, 17.28, 20.74,
24.88, 29.86, and 35.83 points). The series proposed
by Knuth plus the TEX scaled and at operations
provide sufficient means to deal with font scaling in
most applications.

2.2 Too few typefaces

If anything, completely new typefaces are needed.
The number of fonts prepared with METAFONT is
surprisingly small compared, e.g., to what is avail-
able on the commercial market. Well, perhaps not so
surprisingly. As we have already mentioned, META-
FONT generates TEX-oriented pk bitmap fonts which
have not become popular outside the TEX world. In
principle, the conversion of pk bitmaps into Post-
Script Type 1 form is possible, as Szabó and others
have proven. Which does not mean that looking for
alternative tools is impractical.

2.3 Alternative tools

In general, computer tools fall into two classes: vis-
ual (interactive) and logical (programmable). Per-
haps someday the classes will converge and “visual-
and-logical” tools will prevail, but at present, with-
out doubt, interactive tools are in vogue. The ma-
jority of contemporary visual typographic programs
are commercial products. Fortunately, George Will-
iams launched (in 2000) an impressive open source
project, FontForge [17] (originally named PfaEdit).
This font editor is already a powerful tool and, being
extensively developed, it promises even more for the
future, providing an alternative to the proprietary
products. Another interesting visual tool for gen-
erating PostScript Type 1 fonts is Richard Kinch’s
MetaFog [9], which enables visual tuning of META-
POST-generated PostScript files.

Programming tools are not so popular. Are
they to go extinct some day? We hope they will
not. It would be a pity, because in some applica-
tions programmability is better. Fortunately, there
exist people who share our point of view. One of
them is W lodek Bzyl, who found a plausible appli-
cation for the logical approach in typography. His
amazing colour PostScript Type 3 fonts are no mean

66 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting



Latin Modern: Enhancing Computer Modern with accents, accents, accents

challenge for those who use visual tools [3].
Fonts are very complex structures. They are

governed by a large set of interdependent parame-
ters, such as character dimensions, font-specific pa-
rameters (italic angle, x-height, typical stems), char-
acteristic shapes (serifs and arcs), not to mention
such technicalities as hints or subroutines. And here
an important aspect of programmability enters. By
definition, programmable tools require sources in a
human-readable text form. A plethora of standard
text processing utilities (awk, perl, grep, diff) can
therefore be employed to crosscheck the consistency
of the data describing the font. This can hardly
be achieved with purely interactive programs — al-
though it should be noted that some interactive ty-
pographic programs have implemented limited pro-
grammability.

2.4 METAType1

We prefer unlimited programmability. Provoked by
the irksome scarcity of fonts prepared using META-
FONT, we contrived another font generating pack-
age, METAType1 [8], based on METAPOST, which
produces results in the widely accepted PostScript
Type 1 format. The package makes use of two sets of
METAPOST macros (the general purpose plain_ex
and the task-oriented fontbase) and a few other
utilities, such as awk (for processing METAPOST

output), t1utils (for converting text data into a
binary form), and mft (for neat proofing). Origi-
nally, METAType1 was developed for DOS; thanks
to W lodek Bzyl, it is also available for Linux.

Some of the first results obtained with META-
Type1 was Donald E. Knuth’s logo font and an
electronic replica of a traditional Polish font, An-
tykwa Pó ltawskiego [7]. (Available from ftp://
ftp.GUST.org.pl/pub/TeX/GUST/contrib/fonts/
replicas). We also used METAType1 for auditing
and enhancing selected fonts from the URW++ col-
lection distributed with Ghostscript.

In 2002, during the TEX meeting in Bachotek,
Poland, representatives of the European TEX user
groups, having discussed matters via email, devised
a proposal for converting the AE virtual fonts into
a more universal PostScript Type 1 format and also
augmenting them with a set of necessary diacriti-
cal characters. Thus the opportunity arose to try
METAType1 on a new, unconventional task. We
took up the gauntlet without hesitation.

3 The Latin Modern family of fonts; or
details, details, details

Our intention was to preserve the AE name, as we
wanted to emphasize the rôle of Engebretsen’s idea

lmb10 lmr17 lmss10 lmssqbo8
lmbo10 lmr5 lmss12 lmssqbx8
lmbx10 lmr6 lmss17 lmssqo8
lmbx12 lmr7 lmss8 lmtcsc10
lmbx5 lmr8 lmss9 lmtt10
lmbx6 lmr9 lmssbo10 lmtt12
lmbx7 lmri10 lmssbx10 lmtt8
lmbx8 lmri12 lmssdc10 lmtt9
lmbx9 lmri7 lmssdo10 lmtti10
lmbxi10 lmri8 lmsso10 lmtto10
lmbxo10 lmri9 lmsso12 lmvtt10
lmcsc10 lmro10 lmsso17 lmvtto10
lmcsco10 lmro12 lmsso8
lmr10 lmro8 lmsso9
lmr12 lmro9 lmssq8

Figure 2: The Latin Modern collection of fonts.

in this enterprise. Soon it became clear, however,
that the differences would be fundamental and that
the change of the name would be necessary in or-
der to avoid confusion. Therefore, we coined the
name “Latin Modern” to foreshadow further devel-
opment — we would like the final version of LM to
comprise as many Latin-based alphabets as possi-
ble, e.g., Vietnamese (which regretfully is not in-
cluded yet).

The collection of AE fonts consisted of 50 fonts,
reasonably selected from the abundance of Com-
puter Modern. We decided to add a variable-width
typewriter font and a few oblique derivatives, arriv-
ing finally at 57 fonts (see figure 2). Observe two
details:

1. We adopted a more regular (although unortho-
dox) font naming convention with respect to
slanted/italic variants: we have used the letter
‘o’ as a suffix for oblique (slanted) fonts and the
letter ‘i’ as a suffix for truly italic fonts. The
8-character limit is preserved.

2. The LM family contains the font lmssqbx8 (i.e.,
the bold version of lmssq8); a corresponding
font occurs neither in CM nor in EC. Actually,
the respective AE fonts (aessq8, aessqi8, and
aessqb8) refer to the fonts lcmss8 lcmssi8,
and lcmssb8. These fonts, added by Pierre A.
MacKay, were meant to be used with SliTEX.
Their regular variants are nearly identical with
Knuth’s cmssq8 and cmssqi8. The only differ-
ence is the capital ‘I’ (see figure 3).

The issue of font names was triggered by the
slanted fonts that we decided to add: what name
should we assign to the oblique variant of lmvtt10?
The name lmvttsl10 did not conform to the Knuth-
ian 8-character scheme, while the name lmvtti10
did not tell the truth. After thinking the problem
over, we could not find the reason why oblique fonts,

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 67



Bogus law Jackowski and Janusz M. Nowacki

Figure 3: The letter I from Knuth’s cmssq8 (left) and
MacKay’s lcmss8 (right).

i.e., the mechanically skewed ones, received the des-
ignator ‘i’ in some cases (e.g., cmssi10) and the des-
ignator ‘sl’ in other (e.g., cmbxsl10), and why the
designator appeared either at the end of the kernel
of the name, as in the mentioned examples, or —
in some cases — immediately after the prefix ‘cm’
(cmsltt10, cmitt10).1 We could either uphold tra-
ditional Knuth’s terminology (but what then should
we call oblique lmvtt10?) or take an opportunity
and introduce some regularity in font naming at the
risk of commencing an incompatibility mess. We
have chosen the latter solution. . .

The issue of an alternative letter ‘I’ necessi-
tated, besides undertaking a decision whether to in-
troduce it or not (we decided to introduce it as a
variant letter), some extra work due to the addition
of variant accented characters and a variant ligature
IJ . The lmssq* fonts became thus somewhat excep-
tional. This is usually undesirable but sometimes
cannot be avoided.

The reader may wonder why we dwell on such
trifles? The answer is simple: it was the mass of
details of this kind that made the work on the LM

family laborious, although individual tasks were rel-
atively simple. In other words, the problem with
details is that each of them, even the tiniest one,
has to be handled somehow — as the amount of de-
tails grows, the job becomes more complex.

Enumerating all dilemmas, technicalities, sub-
tleties or even puzzles with which we had to struggle
is obviously pointless. On the other hand, our work
consisted nearly exclusively of such details — how to
describe such a work? Perhaps the best method is to
let the reader perceive the scent of the battleground
by showing representative examples. Two such ex-
amples we have already indicated. The rest of the
paper presents a few more.

3.1 From PostScript to METAType1 sources

The process of conversion of fonts from PostScript
1 The reason turns out to be that on the original SAIL de-

velopment computer, the file name limitation was 6+3, even
worse than 8+3, and the shorter names were generated by
taking the first 3 and last 3 characters from the longer. The
names for Computer Modern were chosen to be unique after
applying this procedure. Ed.

Figure 4: The optical axis of a glyph does not
necessarily coincide with the geometric center of the
glyph. Compare the corrected placement of the accent
in gcommaaccent (left) with the default one (right).

Type 1 form into METAType1 sources is only mod-
erately relevant since the potential users of the LM

fonts are not expected to repeat this operation any
more. The METAType1 sources are legible and can
easily be modified, if necessary.

We used a stand-alone utility PF2MT1 (belong-
ing to the METAType1 package) for the translation
of pfb+afm pairs from CM fonts into METAType1

code. The virtual AE fonts provided the necessary
information for merging the results of the conver-
sion. awk turned out to be a very convenient tool
for such operations. Thanks to it, the framework of
the LM sources was ready after a few hours; amend-
ing the LM sources took a few months.

3.2 Tuning and augmenting the METAType1

sources of the LM fonts

The main part of the job, although also the sim-
plest one, was adding accents. METAType1 pro-
vides a use_accent operation, similar to the TEX
\accent primitive, that can conveniently be used
for this purpose. By default, use_accent aligns the
centre of an accent with the centre of its accentee
and raises the accent by x− h, where x is the value
of the x-height parameter, and h is the height of the
character. This is the procedure used by TEX for
accenting. Such an algorithm is not always appro-
priate. Occasionally, the position of an accent may
have to be adjusted. The command use_accent
enables an arbitrary shift of both accent and accen-
tee. Moreover, a supplementary glyph axis param-
eter can optionally be specified for each character
(see figure 4).

All in all, adding accented letters was child’s
play. Somewhat more difficult was adding extra
characters.

In the AE family, the characters were brought
together from several different sources. For example:
• aer10: arrow left hook (i.e., faked ogonek);

• cmmi10: less, greater, bar, backslash, braceleft,
braceright, and section.

68 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting



Latin Modern: Enhancing Computer Modern with accents, accents, accents

Figure 5: There are two acute accents in LM fonts:
a flattened variant is used for capital letters. This
idea was implemented in PL fonts and then in EC.
In general, the flattening is neither a slanting nor a
rotation.

• cmu10: sterling.
• Some characters were drawn using rules: visi-

blespace; missing characters were marked by a
rule having width and height equal to 1/2 em).

• Others were assembled from components:
Aogonek, aogonek, Eogonek, eogonek.
For Latin Modern, we went even further, and

“borrowed” the characters asciicircum and asciitilde
from cmex10; mu — from cmmi10; dagger, daggerdbl,
and paragraph — from cmsy10.

It is debatable whether borrowing characters is
acceptable. The section sign from cmsy10 is cer-
tainly an alien in a sans serif font. Therefore, char-
acters that seemed to us sufficiently important (sec-
tion, sterling) were programmed from scratch. We
used, of course, appropriate parameters from the CM

driver files, but we did not follow Knuth’s recipe rig-
orously. This might have been done (see the com-
ments on the Euro symbol below). We preferred,
however, our shapes of glyphs. This may evoke some
compatibility-related issues but, anyway, full com-
patibility among CM, EC, and AE fonts cannot be
achieved (see section 3.3).

Actually, some characters were borrowed not
from CM fonts but from their PL counterparts (i.e.,
CM fonts equipped with Polish diacritical letters;
the relevant METAFONT code from the PL fonts was
incorporated into the EC sources). The acute and
grave accents over capital and small letters in PL

fonts differ, namely, accents over capital letters are
flattened — we applied the same approach in the LM

fonts (see figure 5) which is consistent with EC and
inconsistent with CM.

Besides the accented, borrowed and newly pro-
grammed variant characters, a few glyphs had to be
programmed from scratch as consistently as possible
with the CM typeface design. A notable example is a
Euro currency symbol. It looks as though it became
so important recently that Adobe even assigned it
a name beginning with a capital letter (cf. dollar,

Figure 6: Euro symbols from the LM fonts; observe
that a Euro symbol is narrower than the corresponding
letter C (above), but that the stem sizes are preserved.
Unfortunately, there is no slot for a Euro symbol in
the Cork Encoding.

yen, sterling, etc., in the Adobe Glyph List For New
Fonts [1]). We attempted to exploit the METAFONT

code for the letter C — and it worked (see figure 6).
The Euro design is philosophically based on a script
E, not a C ; therefore, our design has a bottom serif
to be more distinguishable from C (many thanks to
Werner Lemberg).

The LM fonts also contain a few idiosyncratic
symbols. We wanted, for example, to have a liga-
ture f k in the repertoire of characters (see figure 7)
because there are several words in Polish contain-
ing the sequence ‘fk.’ They are less numerous than
words with ‘fi’ and ‘fl’ but more than words with
‘ffi’ and ‘ffl’ (which occur exclusively in words of
foreign origin).

Of course there are more candidates for non-
standard ligatures, e.g., ‘fb’, ‘fh’, ‘fj’, ‘ffb’, and
‘ffh’. These groups of letters occur sporadically in
English and German (they are absent from Polish),
and may be included in a future release.

3.3 Compatibility issues

The answer to the question of whether the LM fonts

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 69



Bogus law Jackowski and Janusz M. Nowacki

Pair of characters Ligature

Figure 7: There are several words in the Polish
language that contain the digraph ‘fk’; therefore,
we included the ligature f k (top-right) in the LM
character set for the sake of consistency with native
CM ligatures, such as fl (bottom-right).

can serve as a replacement for CM or EC ones is
obviously ‘no’. First of all, the collection of fonts is
different — LM is a subset of CM (except lmssqb8
and a few oblique derivatives), not to mention EC.
Therefore, not every text typeset with CM or EC

fonts can be re-typeset using LM ones.
On the other hand, it should be noted that LM

fonts are based on the data taken from CM driver
files. Therefore, all relevant dimensions are (or at
least should be) the same in LM and CM fonts within
the accuracy of rounding errors. It is thus possible,
for example, to use existing LM fonts as a replace-
ment for CM in the dvips file psfonts.map— it suf-
fices to prepare appropriate encoding (*.enc) files.

In order to reach this level of compatibility, we
had to add two more characters, namely arrowup
and arrowdown which, somewhat surprisingly, are
present in cmr5, but not in other fonts in the cmr*
series. At the same time, we resisted the tempta-
tion to include a full quiver of other arrows. The
main reason was that arrows are absent from the
basic Cork Encoding (they appear only in the Text
Companion Encoding — see, e.g., the file dcdoc.tex
distributed with the EC sources); moreover, since
PostScript is already involved, various transforma-
tions can easily be applied, if necessary. In the fu-
ture, however, we may change our opinion.

The METAType1 programs for the arrows are
based on METAFONT sources contained in sym.mf.
While adapting the code, we encountered a quan-
dary which is a good example of a seemingly trivial
yet embarrassing detail. It turns out that the ar-
row programs produce questionable results for cer-
tain driver files; namely, the sidebearings disappear!
The arrow programs were perhaps never tested with
all driver files. One could live with this; neverthe-
less, we decided to preserve minimal space at both

Figure 8: The METAFONT program for arrows (in
sym.mf) would produce glyphs stripped of sidebearings
for parameters from cmssdc10 (left); arrows in LM
fonts always have sidebearings (right).

Figure 9: The caron alias hacek accent (the leftmost
box) is slightly lowered in the CM fonts; in the LM
fonts, all accents are aligned horizontally.

sides — the result is certainly more palatable (see
figure 8).

Another quandary is related to accents. For
some inexplicable reason, the caron accent in CM

fonts is lowered in relation to the other accents (see
figure 9). We considered it a fault and decided to
raise all carons appropriately. We thus relinquished
full compatibility between CM and LM families —
although we hope this visual “incompatibility” will
be seen as an improvement.

3.4 The game of names

Among many technicalities related to the represen-
tation of PostScript fonts, we would like to comment
upon only one — the particularly upsetting problem
of character names.

There exists a standard of glyph naming worked
out by Adobe [1], contained in the documents Adobe
Glyph List 2.0 (of 20th September 2002) and Adobe
Glyph List for New Fonts 1.1 (of 17th April 2003).
Regretfully, the standard contains numerous entries
that are at best dubious. We have already scoffed
at the name of the Euro symbol that singularly be-
gins with a capital letter. But this is nothing. The
excerpt from the Adobe Glyph List For New Fonts
concerning characters with commaaccent is really
astounding (see figure 10). Even more astounding
is a part of this story pertaining to Tcedilla and
tcedilla:

• Version 1.1 of Adobe Glyph List mentioned the
characters described as ‘T with cedilla’ and ‘t
with cedilla’ and assigned them names Tcom-
maaccent and tcommaaccent, respectively; the

70 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting



Latin Modern: Enhancing Computer Modern with accents, accents, accents

Gcommaaccent; LATIN CAPITAL LETTER G WITH CEDILLA
Kcommaaccent; LATIN CAPITAL LETTER K WITH CEDILLA
Lcommaaccent; LATIN CAPITAL LETTER L WITH CEDILLA
Ncommaaccent; LATIN CAPITAL LETTER N WITH CEDILLA
Rcommaaccent; LATIN CAPITAL LETTER R WITH CEDILLA
Scommaaccent; LATIN CAPITAL LETTER S WITH COMMA BELOW
gcommaaccent; LATIN SMALL LETTER G WITH CEDILLA
kcommaaccent; LATIN SMALL LETTER K WITH CEDILLA
lcommaaccent; LATIN SMALL LETTER L WITH CEDILLA
ncommaaccent; LATIN SMALL LETTER N WITH CEDILLA
rcommaaccent; LATIN SMALL LETTER R WITH CEDILLA
scommaaccent; LATIN SMALL LETTER S WITH COMMA BELOW

Figure 10: An excerpt from the up-to-date Adobe
Glyph List For New Fonts [1]. How sweet. . .

characters that could be described as ‘T with
comma below’ or ‘t with comma below’ were
simply ignored.

• In version 1.2 of the Adobe Glyph List, the
names Tcommaaccent and tcommaaccent were
now assigned both to characters described as
‘T or t with cedilla’ and ‘T or t with comma
below’.

• The up-to-date Adobe Glyph List for New Fonts
says that the most recent change was renam-
ing “[Tt]cedilla back to [Tt]commaaccent”; the
previous version was derived from Adobe Glyph
List 2.0 and one of a few changes was “renam-
ing tcommaaccent to tcedilla and Tcommaac-
cent to Tcedilla”. Note that in the current
version both Tcommaaccent and tcommaaccent
are described as “letter with cedilla”. . .
To untangle the “commaaccent” story a little

bit, we would like to quote a more reliable opinion
from Michael Everson’s web site devoted to Euro-
pean alphabets [5]:
• Concerning Latvian: “The [accented] charac-

ters g, k, l, n, r, G, K, L, N, and R must always
be drawn with a comma below, although these
characters are identified in ISO standards as let-
ters with cedilla. Note particularly the reverse
comma accent used with the latin small letter
g with cedilla.” (Cf. figure 4.)

• Concerning Romanian: “Note that Romanian
uses the characters s with comma below and
t with comma below. In inferior Romanian ty-
pography, the glyphs for these characters are
sometimes drawn with cedillas, but it is strongly
recommended to avoid this practice.”
There were more pitfalls of this kind, not as

ridiculous as the case of the commaaccent, but suffi-
ciently confusing to make this part of the job quite
arduous.

Given such a state of the art, we decided to copy
some glyphs under different names — just in case.

We repeated, e.g., the glyphs scommaaccent, tcom-
maaccent, Scommaaccent, and Tcommaaccent under
the names scedilla, tcedilla, Scedilla, and Tcedilla,
respectively. Altogether, there are approximately
10 duplicated characters per 400-character font.

The duplication of glyphs does not lead to an
enormous inflation of the size of font files because
of a very efficient subroutine packing mechanism
(cf. section 2, p. 66). Actually, a duplicated charac-
ter only increases the size of a font by 30–40 bytes.
This means that 10 duplicated characters would in-
crease a font size by less than 1 percent, as the av-
erage size of an LM font (pfb) is 60 KB.

3.5 Beware of your friends

The basic tools we used (awk, METAPOST, tftopl,
vftovp, t1utils) worked nearly infallibly. Only
once did we meet a truly intricate problem. It was a
bug persistently offered by our friend, METAPOST.

One of the important operations in the process
of font generation is determining the orientation of a
path: anticlockwise-oriented paths are used for fill-
ing, and clockwise-oriented for unfilling. The func-
tion turningnumber in METAFONT and METAPOST

returns +1 and −1 for anticlockwise-oriented and
clockwise-oriented paths, respectively. In META-
FONT it works correctly; in METAPOST, unfortu-
nately, it does not. The bug manifests its presence
even in such trivial cases as the following (see the
top element in figure 11):

path p;

p=(0,10)..controls (5,10) and (10,5)

..(10,0)..controls (10,-5) and (5,-10)

..(0,-10)..controls (-5,-10) and (-10,-5)

..(-10,0)..controls (-10,5) and (-5,10)

..cycle;

This nearly circular 4-node path is evidently clock-
wise-oriented. Nevertheless, METAPOST maintains
that turningnumber p = 0.

We did not analyse the METAPOST source code
as we were not going to fix the bug, but circumvent-
ing it was crucial. The only method that proved to
work was the “straightening” of a path prior to the
application of the turningnumber function; in other
words, each Bézier segment of a path was changed
to a straight line and then the turningnumber func-
tion was applied to the modified path. It works well
enough so far, although the method is not general
(see the bottom two pairs in figure 11) and, more-
over, frequently used straightening slows down the
process of generating fonts.

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 71



Bogus law Jackowski and Janusz M. Nowacki

Original path Straightened path

Figure 11: The operation of straightening a path
typically does not change the orientation of a path
(top); this works around a bug in METAPOST. In
general, however, this may happen—the middle and
bottom pictures show how a non-zero turning number
can be changed to zero and vice versa. The latter
situations, fortunately, are rather unlikely in fonts.

3.6 Encodings

In olden days, there was a one-to-one correspon-
dence between a font name and the name of a font
metric file (tfm). This is not possible any longer. If
there are more characters in a font than 256, as in
CM-super and LM, one has to select a subset of char-
acters and assign codes to every character. Even not
knowing the precise results of combinatorial analy-
sis, one may fancy how many such encodings may
coexist. It seems that there is no choice — metric
files must not use the same name as the basic font,
otherwise a mess is bound to ensue.

One could think of a distinguished (main) en-
coding that would inherit the basic name, but we
would rather equate all encodings. At present, we
supply the Cork, QX, and texnansi text encodings
in the official distribution of the LM fonts.

The Cork encoding does not need further ex-
planation. The QX encoding is actually a “double”
encoding, i.e., there is a fixed collection of characters
and two numberings — one to be used with TEX and
one to be used with GUI systems [12]. It was worked
out a few years ago by the members of the Polish
TEX Users Group GUST as a difficult compromise
between needs and abilities. In a nutshell: the QX

Encoding for TEX is a variant of the Cork Encod-
ing with a few characters exchanged (e.g., gbreve,

Gbreve, uring, and Uring are replaced by Lithua-
nian iogonek, Iogonek, uogonek, and Uogonek, re-
spectively); the QX Encoding for GUI systems is a
variant of the Code Page 1250 (and also includes
Lithuanian characters with ogonek).

Recall that the complete list of the LM font
names is shown in figure 2. The respective tfm file
names are derived by adding prefixes, e.g., cork-
for the Cork Encoding and the prefix qx- for the
QX Encoding. For instance, lmr10 with the Cork
Encoding has the name cork-lmr10 and with the
QX Encoding the name qx-lmr10.

This protocol is admittedly immature. Never-
theless, we do insist on recommending either this
naming scheme or a similar one as a guideline for
TEX users as long as TEX is not capable of handling
multi-byte character codes — or even longer.

3.7 Availability

One final detail: the LM fonts are freely available
at http://www.ctan.org/tex-archive/fonts/lm.
METAType1 is available at http://www.ctan.org/
tex-archive/fonts/utilities/metatype1.

4 Concluding remarks

We would like to emphasize once again that our aim
was not only to provide a new family of fonts, but
to provide it with METAType1 sources that can be
maintained — adjusted, augmented, improved, etc.
While it is rather difficult to write a font program
from scratch, it is relatively simple to modify ex-
isting sources; e.g., as we have mentioned, adding
accented letters is straightforward.

As concerns our plans regarding the LM fam-
ily, we would like to enhance fonts: to extend the
repertoire of characters (first of all by the Text Com-
panion for the EC fonts2), to improve kerning, hint-
ing and shapes of certain glyphs, and, last but not
least, to provide OpenType versions of the LM fonts
for XP trailblazers. We consider, moreover, convert-
ing a few more CM programs from METAFONT to
METAType1, as we would like to eventually dismiss
the borrowed characters (see section 3.1, p. 69).

Before bringing the curtain down, we would like
to draw the reader’s attention to a weak point of our
approach: the CM parameterization has been lost.
The METAType1 sources can be enhanced, but they
cannot be used for producing, say, light or condensed
versions of sans serif fonts. An experiment with
the programming of the Euro symbol and the ar-
rows has shown that converting METAFONT sources

2 This has been accomplished as this TUGboat issue goes
to press.

72 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting



Latin Modern: Enhancing Computer Modern with accents, accents, accents

to METAType1 ones without losing the parame-
terization is, in general, possible but rather time-
consuming. It is an open question whether such
a venture, while extremely attractive, is practical.

5 Acknowledgments

The project is supported by European TEX user
groups, in particular by the German-speaking TEX
users group DANTE e.V., the French-speaking TEX
users group GUTenberg, and the Dutch-speaking
TEX users group NTG; and also by the TEX Users
Group — very many thanks to all. We are also grate-
ful to Volker Schaa and Stefan Soko lowski for their
valuable comments concerning the draft version of
the paper.

References

[1] Adobe Solutions Network: Type Technology —
Unicode and Glyph Names, http://
partners.adobe.com/asn/tech/type/
unicodegn.html

[2] Adobe Type 1 Font Format. Addison-Wesley,
1990, http://partners.adobe.com/asn/
developer/pdfs/tn/T1 SPEC.PDF

[3] W lodzimierz Bzyl, The Tao of Fonts. Proc.
of TUG 2002, 4th – 7th September, 2002,
Trivandrum, India, TUGboat 23(1), March
2003, pp. 27 – 40. http://tug.org/TUGboat/
Articles/tb23-1/bzyl.pdf

[4] Lars Engebretsen, AE fonts,
http://ctan.org/tex-archive/fonts/ae/

[5] Michael Everson, The Alphabets of Europe
(ver. 3.0), http://www.evertype.com/
alphabets/

[6] Michael Ferguson, Report on multilingual
activities, TUGboat 11(4), November 1990,
p. 514.

[7] Bogus law Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, Antykwa Pó ltawskiego:
A Parameterized Outline Font. Proc. of
EuroTEX 1999, 20th – 24th September, 1999,
Heidelberg, Germany, pp. 109 – 141.

[8] Bogus law Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, METAType1:
A METAPOST-based Engine for
Generating Type 1 Fonts. Proc. of
EuroTEX 2001, 27th – 27th September, 2001,
Kerkrade, the Netherlands, pp. 111 – 119,
http://www.ntg.nl/eurotex/metatyp1.pdf
and http://www.ntg.nl/eurotex/
JackowskiMT.pdf

[9] Richard J. Kinch, MetaFog: Converting
METAFONT Shapes to Contours.

TUGboat 16(3), pp. 233 – 243, 1995.
http://tug.org/TUGboat/Articles/
tb16-3/tb48kinc.pdf

[10] Han-Wen Nienhuys, MFTrace — Scalable Fonts
for METAFONT, http://www.xs4all.nl/
∼hanwen/mftrace/

[11] John Plaice and Yannis Haralambous,
Omega System, http://sourceforge.net/
projects/omega-system/

[12] QX encoding tables for TEX and for
window systems, http://www.gust.
org.pl/fonty/qx-table1.html, http:
//www.gust.org.pl/fonty/qx-table2.html

[13] John Sauter, Building Computer Modern
Fonts, TUGboat 7(3), October 1986, p. 151.

[14] Péter Szabó, TEXtrace,
http://www.inf.bme.hu/∼pts/textrace/

[15] Vladimir Volovich, CM-super Font Package,
ftp://ftp.vsu.ru/pub/tex/font-packs/
cm-super/

[16] Martin Weber, Autotrace,
http://autotrace.sourceforge.net/

[17] George Williams, FontForge: A PostScript
Font Editor,
http://fontforge.sourceforge.net/

A The contents of the Latin Modern
family of fonts, version 0.92

For meticulous readers, we enclose below the com-
plete list of LM glyph names in alphabetic order.
Note that some characters do not occur in all fonts,
e.g, there are no f -ligatures in the typewriter fonts.

In all, there are five classes of character sets:
1. The basic class (527 glyphs); this class

consists of lmb10, lmbo10, lmbx10, lmbx12,
lmbx5, lmbx6, lmbx7, lmbx8, lmbx9, lmbxi10,
lmbxo10, lmr10, lmr12, lmr17, lmr5, lmr6,
lmr7, lmr8, lmr9, lmri10, lmri12, lmri7,
lmri8, lmri9, lmro10, lmro12, lmro8, lmro9,
lmss10, lmss12, lmss17, lmss8, lmss9,
lmssbo10, lmssbx10, lmssdc10, lmssdo10,
lmsso10, lmsso12, lmsso17, lmsso8, lmsso9,
lmvtt10, and lmvtto10.

2. The class ‘ssq’ (538 glyphs); besides the charac-
ters present in the basic class, it contains varI,
varIacute, varIcircumflex, varIdieresis, varIdo-
taccent, varIgrave, varIJ, varImacron, varIo-
gonek, varItilde, and varIvardieresis. The fol-
lowing fonts belong to this family: lmssq8,
lmssqbo8, lmssqbx8, and lmssqo8 (cf. figure 3
and the relevant comments in section 2).

3. The class ‘typewriter’ (512 glyphs); the fol-
lowing glyphs are missing in comparison with

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 73



Bogus law Jackowski and Janusz M. Nowacki

the basic class: f k, ff, ffi, ffl, fi, fl, Germand-
bls, IJ, ij, permyriad, servicemark, suppress,
trademark, varcopyright, and varregistered. The
class consists of lmtt10, lmtt12, lmtt8, lmtt9,
lmtti10, and lmtto10.

4. The class for only lmcsc10 and lmcsco10 (519
glyphs); the following glyphs are missing in
comparison with the basic class: dquoteright,
f k, ff, ffi, ffl, fi, fl, and tquoteright.

5. The class for only lmtcsc10 (510 glyphs); the
set of missing characters is as in class 3 plus
dquoteright and tquoteright.

A.1 Alphabetic list of glyphs in the
Latin Modern family

A a Aacute aacute Abreve abreve Acircumflex

acircumflex Acute acute acute.dup acute.ts1 Adieresis

adieresis AE ae AE.dup ae.dup Agrave agrave althyphen

Amacron amacron ampersand anglearc angleleft

angleright Aogonek aogonek Aring aring arrowdown

arrowleft arrowright arrowup asciicircum asciitilde

asterisk asteriskmath at Atilde atilde Avardieresis

avardieresis

B b backslash baht bar bigcircle blanksymbol born

braceleft braceright bracketleft bracketright breve

breve.ts1 brokenbar bullet

C c Cacute cacute caron caron.ts1 Ccaron ccaron

Ccedilla ccedilla Ccircumflex ccircumflex Cdotaccent

cdotaccent cedilla cedilla.dup cent centigrade

centoldstyle circumflex circumflex.dup colon

colonmonetary comma commaaccent copyleft copyright

csquotedblbase csquotedblright currency cwm

cwmascender cwmcapital

D d dagger daggerdbl dbar dblbracketleft

dblbracketright dblgrave.ts1 dblverticalbar

Dcaron dcaron Dcroat dcroat degree Delta diameter died

dieresis dieresis.dup dieresis.ts1 discount divide

divorced dmacron dollar dollaroldstyle dong dotaccent

dotlessi dotlessj dquoteright

E e Eacute eacute Ebreve ebreve Ecaron ecaron

Ecircumflex ecircumflex Edieresis edieresis

Edotaccent edotaccent Egrave egrave eight

eightoldstyle ellipsis Emacron emacron emdash

endash Eng eng Eogonek eogonek equal estimated Eth eth

Euro euro Evardieresis evardieresis exclam exclamdown

F f f k ff ffi ffl fi five fiveoldstyle fl florin four

fouroldstyle fraction

G g Gacute gacute Gamma Gbreve gbreve Gcaron gcaron

Gcedilla Gcircumflex gcircumflex Gcommaaccent

gcommaaccent Gdotaccent gdotaccent Germandbls

germandbls germandbls.dup gnaborretni Grave

grave grave.ts1 greater guarani guillemotleft

guillemotright guilsinglleft guilsinglright

H h Hbar hbar Hcircumflex hcircumflex hungarumlaut

hungarumlaut.ts1 hyphen hyphenchar hyphendbl

hyphendbl.alt

I i Iacute iacute Icircumflex icircumflex Idieresis

idieresis Idotaccent Igrave igrave IJ ij Imacron

imacron interrobang Iogonek iogonek Itilde itilde

Ivardieresis ivardieresis

J j Jcircumflex jcircumflex

K k Kcedilla kcedilla Kcommaaccent kcommaaccent

L l Lacute lacute Lambda Lcaron lcaron Lcedilla

lcedilla Lcommaaccent lcommaaccent Ldotaccent

ldotaccent leaf less lira logicalnot Lquoteright

lquoteright Lslash lslash

M m macron macron.dup macron.ts1 married mho minus mu

multiply musicalnote

N n Nacute nacute naira nbspace Ncaron ncaron Ncedilla

ncedilla Ncommaaccent ncommaaccent nine nineoldstyle

nomero Ntilde ntilde numbersign

O o Oacute oacute Obreve obreve Ocircumflex

ocircumflex Odieresis odieresis OE oe OE.dup oe.dup

ogonek Ograve ograve ohm Ohungarumlaut ohungarumlaut

Omacron omacron Omega one onehalf oneoldstyle

onequarter onesuperior Oogonek oogonek openbullet

ordfeminine ordmasculine Oslash oslash Oslash.dup

oslash.dup Otilde otilde Ovardieresis ovardieresis

P p paragraph paragraph.alt parenleft parenright

percent period periodcentered permyriad perthousand

perthousandzero peso Phi Pi plus plusminus Psi

published

Q q question questiondown quillbracketleft

quillbracketright quotedbl quotedbl.alt quotedblbase

quotedblbase.alt quotedblbase.ts1 quotedblleft

quotedblleft.alt quotedblright quotedblright.alt

quoteleft quoteleft.alt quoteleft.dup quoteright

quoteright.alt quoteright.dup quotesinglbase

quotesinglbase.alt quotesinglbase.ts1 quotesingle

quotesingle.alt quotesingle.ts1

R r Racute racute radical Rcaron rcaron Rcedilla

rcedilla Rcommaaccent rcommaaccent recipe

referencemark registered registered.alt ring

S s Sacute sacute Scaron scaron Scedilla scedilla

Scircumflex scircumflex Scommaaccent scommaaccent

section semicolon servicemark seven sevenoldstyle

sfthyphen Sigma six sixoldstyle slash space sterling

suppress

T t Tcaron tcaron Tcedilla tcedilla Tcommaaccent

tcommaaccent Theta Thorn thorn three threeoldstyle

threequarters threequartersemdash threesuperior

tieaccentcapital tieaccentcapital.new

tieaccentlowercase tieaccentlowercase.new tilde

tilde.dup tildelow tquoteright trademark twelveudash

two twooldstyle twosuperior

U u Uacute uacute Ubreve ubreve Ucircumflex

ucircumflex Udieresis udieresis Ugrave ugrave

Uhungarumlaut uhungarumlaut Umacron umacron

underscore Uogonek uogonek Upsilon Uring uring Utilde

utilde Uvardieresis uvardieresis

V v varcopyright vardieresis vardotaccent varI

varIacute varIcircumflex varIdieresis varIdotaccent

varIgrave varIJ varImacron varIogonek varItilde

varIvardieresis varregistered visiblespace

W w Wacute wacute Wcircumflex wcircumflex Wdieresis

wdieresis Wgrave wgrave won Wvardieresis wvardieresis

X x Xi

Y y Yacute yacute Ycircumflex ycircumflex Ydieresis

ydieresis yen Ygrave ygrave Yvardieresis yvardieresis

Z z Zacute zacute Zcaron zcaron Zdotaccent zdotaccent

zero zerooldstyle

74 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting


